A versatile structure-based therapeutic platform for development of VHH-based antitoxin and antiviral agents
一个多功能的基于结构的治疗平台,用于开发基于 VHH 的抗毒素和抗病毒药物
基本信息
- 批准号:10560883
- 负责人:
- 金额:$ 86.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-04 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoV3-DimensionalAffinityAnimal Disease ModelsAnimal ModelAnimalsAntibodiesAntibody TherapyAntiviral AgentsAreaAutoimmuneBindingBiological AssayBotulinum ToxinsBotulismCOVID-19 pandemicCOVID-19 patientCell Culture TechniquesCharacteristicsClinicalClostridium difficileCommunicable DiseasesComplexDangerousnessDataDevelopmentDiseaseEpitopesEquus caballusEvolutionFamilyFundingFutureGoalsHigh PrevalenceHumanImmuneImmune SeraInfectionIntoxicationIntramuscularLeadLengthLifeLinkMalignant NeoplasmsMediatingMessenger RNAModelingMonoclonal AntibodiesMusPassive ImmunotherapyPathologyPoisoningProductionPropertyProphylactic treatmentProteinsRNAResearchRouteSARS coronavirusSARS-CoV-2 variantSerotypingSpecificityStructureTestingTherapeuticTherapeutic AgentsTherapeutic EffectTherapeutic Monoclonal AntibodiesTherapeutic antibodiesToxinUnited States National Institutes of HealthVaccinatedVariantViralVirusVirus DiseasesWorkantitoxinclinically relevantcostdesigndisorder preventionhuman diseaseimprovedin vivomanufacturemicrobialnanobodiesnanoparticleneutralizing antibodynext generationnovelnovel therapeuticspandemic potentialpathogenporcine modelpreventproduct developmentprophylacticpublic health relevancereceptor bindingrisk minimizationstandard of caretechnology platformtherapeutic developmenttransmission processvaccine efficacyvariants of concernvirtual
项目摘要
ABSTRACT
In previous NIH sponsored research we successfully tested the hypothesis that integrating structural and
mechanistic information into heteromultimeric VHH-based neutralizing agent (VNA) design facilitated
development of antitoxins with even greater efficacy and versatility. In this renewal proposal, we will apply these
findings to test the hypothesis that our designer VNA platform, which is rapidly responsive to new threats, will
permit development of highly practical, next-generation antitoxin and antiviral products that possess excellent
potencies in treating intoxications or viral infections and are effective against a broad range of natural pathogen
variants. Our research will focus on two pathogens that are major current threats which could benefit from next-
generation therapeutics: botulinum neurotoxin (BoNT) and SARS-CoV-2. We propose two Specific Aims which
will be underway simultaneously throughout the five years of research. In Aim 1, we will develop a small pool of
antitoxin VNAs that protect against all subtypes of the three prevalent BoNT serotypes (A, B and E). BoNTs are
CDC Tier 1 select agents. However, the few available antitoxin treatments against BoNTs primarily derive from
large animal polyclonal antisera, such as the equine botulism antitoxin HBAT, which suffer from multiple
manufacturing and storage challenges. Our goal is to test the platform’s ability to produce highly practical VNAs
as a next-generation BoNT antitoxin product, likely delivered as RNA nanoparticles, which improves on the
potencies and natural variant specificities of the current HBAT antitoxin product and is rapidly responsive to
potential new BoNT threats. In Aim 2 we will develop a single VNA antiviral agent that protects against known
variants of SARS-CoV-1 and SARS-CoV-2. SARS-CoV-2 is the viral cause of the ongoing COVID-19 pandemic.
A promising strategy for rapid development of a therapy is development of SARS-CoV-2 neutralizing antibodies,
especially antibodies targeting the spike protein, for prophylactic or passive immunotherapies. However, novel
variants of SARS-CoV-2, which cause enhanced infection and transmission, have emerged, and more
dangerous variants are expected to evolve. Of immediate concern are variants that partially escape
neutralization by current Ab-based therapies and in vaccinated or previously-infected COVID-19 patients, leading
to reduced vaccine efficacy in certain areas with a high prevalence of these variants. We propose an mRNA-
based antiviral product that, once administered, elicits expression of a VNA with extremely high virus neutralizing
potency. The VNA will contain multiple covalently linked VHHs binding to conserved epitopes of the spike protein.
This approach will test the platform’s ability to develop a product that minimizes the risks of immune escape
through evolution and selection of clinical strains of SARS-CoV-2 and SARS-CoV-1. If successful, this
technology platform could have broad applications in creating practical therapeutics for a wide variety of
emerging and potential pandemic viral infections, bioterror threat agents, and other infectious diseases.
抽象的
在之前的 NIH 资助的研究中,我们成功地检验了整合结构和
促进基于异多聚体 VHH 的中和剂 (VNA) 设计的机械信息
开发具有更大功效和多功能性的抗毒素在这个更新提案中,我们将应用这些。
我们的设计 VNA 平台能够快速响应新威胁,将验证以下假设:
允许开发高度实用的下一代抗毒素和抗病毒产品,这些产品具有优异的性能
具有治疗中毒或病毒感染的功效,并且对多种天然病原体有效
我们的研究将集中于当前主要威胁的两种病原体,这两种病原体可能会从下一步中受益。
新一代疗法:肉毒杆菌神经毒素 (BoNT) 和 SARS-CoV-2 我们提出了两个具体目标。
将在五年的研究中同时进行。在目标 1 中,我们将开发一个小型库。
抗毒素 VNA 可预防三种常见 BoNT 血清型(A、B 和 E)的所有亚型。
CDC 一级精选药物 然而,少数可用的针对 BoNT 的抗毒素治疗主要来自于 BoNT。
大型动物多克隆抗血清,例如马肉毒杆菌抗毒素 HBAT,其患有多种疾病
我们的目标是测试该平台生产高度实用的 VNA 的能力。
作为下一代 BoNT 抗毒素产品,可能以 RNA 纳米粒子的形式提供,这改进了
当前 HBAT 抗毒素产品的效力和自然变异特异性,并且能够快速响应
在目标 2 中,我们将开发一种单一的 VNA 抗病毒药物,以防御已知的潜在新 BoNT 威胁。
SARS-CoV-1 和 SARS-CoV-2 的变种是当前 COVID-19 大流行的病毒原因。
快速开发治疗方法的一个有前景的策略是开发 SARS-CoV-2 中和抗体,
尤其是针对刺突蛋白的抗体,用于预防性或被动免疫疗法。
SARS-CoV-2 的变种已出现,可导致感染和传播增强,并且更多
预计会出现危险的变体,最令人担忧的是部分逃脱的变体。
当前基于抗体的疗法以及在肺炎或既往感染的 COVID-19 患者中的中和作用,导致
为了降低这些变异流行率较高的某些地区的疫苗功效,我们提出了一种 mRNA-。
基于抗病毒产品,一旦施用,就会引发具有极高病毒中和作用的 VNA 表达
VNA 将包含多个共价连接的 VHH,与刺突蛋白的保守表位结合。
这种方法将测试该平台开发将免疫逃逸风险降至最低的产品的能力
通过 SARS-CoV-2 和 SARS-CoV-1 临床毒株的进化和选择 如果成功的话,
技术平台可以在为多种疾病创建实用疗法方面具有广泛的应用
新出现和潜在的大流行病毒感染、生物恐怖威胁因子和其他传染病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rongsheng Jin其他文献
Rongsheng Jin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rongsheng Jin', 18)}}的其他基金
Structural basis for recognition of SV2 by type E botulinum neurotoxin
E型肉毒杆菌神经毒素识别SV2的结构基础
- 批准号:
10281936 - 财政年份:2021
- 资助金额:
$ 86.57万 - 项目类别:
Developing broad-spectrum therapeutics against C. difficile toxins
开发针对艰难梭菌毒素的广谱疗法
- 批准号:
10348784 - 财政年份:2021
- 资助金额:
$ 86.57万 - 项目类别:
Structural basis for recognition of SV2 by type E botulinum neurotoxin
E型肉毒杆菌神经毒素识别SV2的结构基础
- 批准号:
10448471 - 财政年份:2021
- 资助金额:
$ 86.57万 - 项目类别:
Developing broad-spectrum therapeutics against C. difficile toxins
开发针对艰难梭菌毒素的广谱疗法
- 批准号:
10548826 - 财政年份:2021
- 资助金额:
$ 86.57万 - 项目类别:
Developing broad-spectrum therapeutics against C. difficile toxins
开发针对艰难梭菌毒素的广谱疗法
- 批准号:
10181652 - 财政年份:2021
- 资助金额:
$ 86.57万 - 项目类别:
Structural basis of Rho glucosylation by Clostridium difficile toxins
艰难梭菌毒素 Rho 糖基化的结构基础
- 批准号:
10308686 - 财政年份:2020
- 资助金额:
$ 86.57万 - 项目类别:
Molecular mechanisms of botulinum neurotoxin neutralization
肉毒杆菌神经毒素中和的分子机制
- 批准号:
9160875 - 财政年份:2016
- 资助金额:
$ 86.57万 - 项目类别:
Structural mechanism for recognition of host receptor by botulinum neurotoxin A
A型肉毒杆菌神经毒素识别宿主受体的结构机制
- 批准号:
9238660 - 财政年份:2016
- 资助金额:
$ 86.57万 - 项目类别:
Molecular mechanisms of botulinum neurotoxin neutralization
肉毒杆菌神经毒素中和的分子机制
- 批准号:
9271846 - 财政年份:2016
- 资助金额:
$ 86.57万 - 项目类别:
Molecular mechanisms of botulinum neurotoxin neutralization
肉毒杆菌神经毒素中和的分子机制
- 批准号:
9918242 - 财政年份:2016
- 资助金额:
$ 86.57万 - 项目类别:
相似国自然基金
单一取向CsPbBr3一维光波导阵列在异质半导体低维结构上的面内集成及其在光电互联中的应用研究
- 批准号:62374057
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
Ti3C2Tx诱导锌金属负极表面三维重构及锌沉积调控新机制研究
- 批准号:52372236
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
本征二维磁性材料CrI3的缺陷原子结构与磁性关联研究
- 批准号:12304019
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
三维有序大/介孔稀土氧化物(La2O3和CeO2)负载Ru催化剂用于氨分解性能研究
- 批准号:52361040
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
应变调控二维磁性材料VX3的磁光拉曼研究
- 批准号:12304042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Structure-guided neutralizing antibodies developed using EpiVolve technology
使用 EpiVolve 技术开发的结构引导中和抗体
- 批准号:
10698958 - 财政年份:2023
- 资助金额:
$ 86.57万 - 项目类别:
Structure-guided neutralizing antibodies developed using EpiVolve technology
使用 EpiVolve 技术开发的结构引导中和抗体
- 批准号:
10698958 - 财政年份:2023
- 资助金额:
$ 86.57万 - 项目类别:
Four-dimensional Adhesion Frequency Assay for Full Profiling of Receptor-ligand Interactions on Cells
四维粘附频率测定,全面分析细胞上受体-配体相互作用
- 批准号:
10707983 - 财政年份:2022
- 资助金额:
$ 86.57万 - 项目类别:
Developing Broad-Spectrum Antivirals Targeting Coronavirus Replicase and Helicase
开发针对冠状病毒复制酶和解旋酶的广谱抗病毒药物
- 批准号:
10513685 - 财政年份:2022
- 资助金额:
$ 86.57万 - 项目类别:
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长距离氨基酸取代引起的结合亲和力/特异性的变化
- 批准号:
10707418 - 财政年份:2022
- 资助金额:
$ 86.57万 - 项目类别: