Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长距离氨基酸取代引起的结合亲和力/特异性的变化
基本信息
- 批准号:10502084
- 负责人:
- 金额:$ 42.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-20 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAffinityAlgorithmsAmino Acid SubstitutionAmino AcidsAutomobile DrivingBindingBinding SitesBiologicalBiophysicsCollaborationsComputer ModelsComputersCoupledCouplingCyclic AMP Receptor ProteinDNA BindingDataDevelopmentDiseaseDistalEquilibriumEscherichia coliEventEvolutionExhibitsGenetic EpistasisGenetic VariationGoalsHomologous ProteinHuman GeneticsImpairmentLactoseLigand BindingLigandsMachine LearningMeasuresMedicineMethodsMissense MutationModelingMolecularMolecular GeneticsMotionMutationOpen Reading FramesOutcomePhenotypePositioning AttributePropertyProtein DynamicsProtein EngineeringProteinsPublishingRecording of previous eventsRepressor ProteinsResearchRestSARS-CoV-2 proteaseSARS-CoV-2 spike proteinSamplingSiteSpecificitySystemTechnologyTestingVariantViralViral Proteinsbasecombinatorialcomputerized toolsdelta proteinexperimental studyflexibilityfunctional outcomesgenetic evolutionimprovedmolecular dynamicsmolecular modelingnetwork modelsnoveloutcome predictionpersonalized medicinepredictive modelingpredictive toolsprotein functionresponsestructural biologysuccess
项目摘要
Summary
Advanced sequencing technologies provide ever-increasing quantities of data about human genetic variation
and viral evolution. However, predicting the outcomes of missense mutations in protein coding regions remains
a challenge, creating a bottleneck in discriminating biomedically-relevant variants from neutral ones (with little or
no effect on phenotype). In particular, outcome predictions are very poor when a missense mutation alters amino
acids that are located far from a protein’s functional/binding sites. These shortcomings also impair protein
design. We propose to ameliorate these needs by developing quantitative, computational models that predict
the effects of long-distance substitutions on binding interactions. To that end, we have developed an approach
in which (1) a protein’s collective motions are first revealed by molecular dynamics simulations and then (2) force
perturbation is used to disrupt the protein’s equilibrium, thereby approximating the effects of ligand binding. We
have used this approach in published studies and preliminary data to illuminate the propagation of dynamical
changes through a protein’s anisotropic network of interactions. Results suggest that changes in these dynamic
networks have crucial effects on protein function, thereby leading to our central hypothesis: The effects of long-
distance substitutions on ligand binding are emergent properties of changes in the protein’s dynamically-coupled,
anisotropic network. The goal of the current proposal is to extend this computational approach to develop
models that predict: (Aim 1) the magnitudes of binding affinity changes arising from long-distance, modulating
substitutions; (Aim 2) which pairs of non-contact substitutions have non-additive effects on binding affinities
(“epistasis”); and (Aim 3) which long-distance positions contribute to ligand specificity. To that end, we have a
well-established collaboration that allows us to iterate between computational predictions and experimental
testing, enabling development of quantitative models with computed accuracies. Our preliminary studies used
the well-characterized E. coli lactose repressor protein (LacI), for which experimental results validate our
preliminary computational models and provide specific hypotheses for Aims 1-3. Additional model proteins will
be used to show the generality of our approach and will include the LacI homolog PurR, the cAMP receptor
protein, and a viral protease SARS-Cov2-Mpro. Results will be used to provide novel computational tools for
predicting functional outcomes of long-distance substitutions. The success of this project will catalyze research
at the interface of protein structural biology, molecular genetics, evolution and medicine by advancing the
mechanistic understanding of how substitutions distal from functional sites alter ligand binding.
概括
先进的测序技术提供了越来越多的有关人类遗传变异的数据
然而,预测蛋白质编码区错义突变的结果仍然存在。
一个挑战,在区分生物医学相关变体和中性变体(很少或很少)方面造成了瓶颈
特别是,当错义突变改变氨基时,结果预测非常差。
远离蛋白质功能/结合位点的酸这些缺点也会损害蛋白质。
我们建议通过开发预测的定量计算模型来改善这些需求。
为此,我们开发了一种方法。
其中(1)首先通过分子动力学模拟揭示蛋白质的集体运动,然后(2)力
扰动用于破坏蛋白质的平衡,从而近似配体结合的效果。
在已发表的研究和初步数据中使用了这种方法来阐明动力学的传播
通过蛋白质的各向异性相互作用网络发生变化结果表明这些动态的变化。
网络对蛋白质功能具有至关重要的影响,从而得出我们的中心假设:长期的影响
配体结合上的距离取代是蛋白质动态耦合变化的新兴特性,
当前提案的目标是扩展这种计算方法来开发。
模型预测:(目标 1)长距离调节引起的结合亲和力变化的幅度
取代;(目标 2)哪对非接触取代对结合亲和力具有非加性效应
(“上位性”);和(目标 3)哪些长距离位置有助于配体特异性。
完善的合作使我们能够在计算预测和实验之间进行迭代
测试,从而能够开发具有计算精度的定量模型。
充分表征的大肠杆菌乳糖阻遏蛋白 (LacI),实验结果验证了我们的研究
初步计算模型并为目标 1-3 提供具体假设。
用于展示我们方法的通用性,并将包括 LacI 同源物 PurR,即 cAMP 受体
蛋白质和病毒蛋白酶 SARS-Cov2-Mpro 结果将用于提供新的计算工具。
预测长距离替代的功能结果将促进研究。
通过推进蛋白质结构生物学、分子遗传学、进化论和医学的交叉
对远离功能位点的取代如何改变配体结合的机制理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sefika Banu Ozkan其他文献
Sefika Banu Ozkan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sefika Banu Ozkan', 18)}}的其他基金
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长程氨基酸取代引起的结合亲和力/特异性的变化
- 批准号:
10797940 - 财政年份:2022
- 资助金额:
$ 42.41万 - 项目类别:
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长距离氨基酸取代引起的结合亲和力/特异性的变化
- 批准号:
10707418 - 财政年份:2022
- 资助金额:
$ 42.41万 - 项目类别:
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
DNA四面体限域辅助的高亲和力铅笔芯微电极用于早期癌症精准诊断研究
- 批准号:22304062
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
相似海外基金
Multivalent protein-DNA nanostructures as synthetic blocking antibodies
多价蛋白质-DNA 纳米结构作为合成阻断抗体
- 批准号:
10587455 - 财政年份:2023
- 资助金额:
$ 42.41万 - 项目类别:
Predicting adverse drug reactions via networks of drug binding pocket similarity
通过药物结合袋相似性网络预测药物不良反应
- 批准号:
10750556 - 财政年份:2023
- 资助金额:
$ 42.41万 - 项目类别:
Directed evolution of broadly fungible biosensors
广泛可替代生物传感器的定向进化
- 批准号:
10587024 - 财政年份:2023
- 资助金额:
$ 42.41万 - 项目类别:
Scalable Computational Methods for Genealogical Inference: from species level to single cells
用于谱系推断的可扩展计算方法:从物种水平到单细胞
- 批准号:
10889303 - 财政年份:2023
- 资助金额:
$ 42.41万 - 项目类别:
Deep learning augmented protein mapping software to screen large compound libraries
深度学习增强蛋白质图谱软件可筛选大型化合物库
- 批准号:
10382809 - 财政年份:2022
- 资助金额:
$ 42.41万 - 项目类别: