AI-driven low-cost ultrasound for automated quantification of hypertension, preeclampsia, and IUGR
AI 驱动的低成本超声可自动量化高血压、先兆子痫和 IUGR
基本信息
- 批准号:10708135
- 负责人:
- 金额:$ 61.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-20 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAlgorithmsArtificial IntelligenceBirthBlood PressureCaringCellular PhoneChildhoodCodeComputer SystemsCountryDataDetectionDevelopmentDevicesDisparityDoppler UltrasoundFetal DevelopmentFetal GrowthFetal Growth RetardationFetal Heart RateFoundationsFrontline workerFundingGestational AgeGoalsGuatemalaHealthHealth systemHigh-Risk PregnancyHypertensionImageImprove AccessIncomeInfantInternationalKnowledgeLabelLifeMachine LearningMaternal HealthMaternal MortalityMedicalMissionMonitorMorbidity - disease rateNational Institute of Child Health and Human DevelopmentNeonatal MortalityObservational StudyOutcomePatientsPerinatal mortality demographicsPopulationPre-EclampsiaPregnancyPregnancy ComplicationsPrenatal careProcessResearchResource-limited settingResourcesRunningRuralSignal TransductionSystemTechniquesTechnologyTimeTrainingTransducersTriageUnderserved PopulationValidationWorkclinical riskcohortcostcost effectivedata exchangedeep learning algorithmdiagnostic accuracydiagnostic platformdiagnostic strategydiagnostic tooldiagnostic valueempowermentfetalfetal medicinefield studyheart rate variabilityhigh riskimprovedinnovationlong short term memorylow and middle-income countriesmaternal hypertensionmaternal riskmortalityneonatal healthneural networknovelnovel strategiesperinatal outcomespoint of carepredictive toolspregnancy disorderpreventprospectivepublic health relevancerisk prediction modelscreeningstandard of carestillbirthtechnology validationtv watchingtwo-dimensionalultrasound
项目摘要
PROJECT SUMMARY/ABSTRACT
Life-saving advances in medical care in recent decades have reduced global mortality rates but have
underperformed in addressing maternal mortality, stillbirth, and neonatal mortality. A key reason for these
disparities in both low- and high-income settings is the lack of systematic screening with appropriate and
affordable) technology for high priority conditions such as maternal hypertension and preeclampsia and fetal
growth restriction. The development of new low-cost diagnostic tools to improve access to detection of these
conditions by front-line workers would change outcomes for the most underserved populations, which is our
long-term goal. In an NICHD-funded study, we collected point of care Doppler ultrasound recordings and
developed a preliminary machine learning approach for detecting intrauterine growth restriction (IUGR) and
maternal hypertension. The overall objective of this proposal is to prospectively validate these findings in two
large underserved pregnancy cohorts in rural Guatemala and urban Georgia. Our general hypothesis is that our
low-cost artificial intelligence will perform as well in detecting maternal hypertension, preeclampsia, and IUGR
as standard-of-care high-cost diagnostic approaches. In Aim 1, we will validate our ultrasound-based IUGR
detection algorithm against the standard of care (2-dimensional fetal imaging). In Aim 2, we will validate
maternal hypertension and preeclampsia algorithms against gold-standard blood pressure devices and clinical
risk prediction tools. In Aim 3, we will implement real-time versions of the algorithms validated in Aims 1 and
2 and implement them on an edge-computing system for field testing. Successful completion of this proposal will
result in a novel and cost-effective approach to screening for maternal hypertension, preeclampsia, and IUGR
using point-of-care Doppler connected to a low-cost, AI-enabled edge-computing system, suitable for wide use
in low-resource settings. This proposal is innovative because it uses an artificial intelligence approach and
widely-available point-of-care Doppler devices to provide new approaches to timely detection of high-impact
maternal-fetal conditions. Our results will provide a strong basis for wide-scale deployment of new maternal and
fetal screening technology which is expected to have a significant impact on maternal and fetal morbidity by
improving access to timely screening. This research aligns with the NICHD's mission to advance knowledge of
pregnancy, fetal development, and birth by promoting strategies that prevent maternal, infant, and childhood
mortality and morbidity through lost-cost high-impact screening technology.
项目概要/摘要
近几十年来,挽救生命的医疗进步降低了全球死亡率,但
在解决孕产妇死亡率、死产和新生儿死亡率方面表现不佳。造成这些的一个关键原因是
低收入和高收入环境中的差异在于缺乏采用适当和适当的方法进行系统筛查
用于治疗孕产妇高血压、先兆子痫和胎儿等高度优先疾病的技术
生长限制。开发新的低成本诊断工具以改善这些疾病的检测
一线工作人员的条件将改变服务最匮乏人群的结果,这是我们的
长期目标。在 NICHD 资助的一项研究中,我们收集了护理点多普勒超声记录并
开发了一种初步的机器学习方法来检测宫内生长受限(IUGR)
产妇高血压。该提案的总体目标是前瞻性地在两个方面验证这些发现
危地马拉农村地区和乔治亚州城市地区有大量得不到充分服务的怀孕群体。我们的一般假设是我们的
低成本人工智能在检测孕产妇高血压、先兆子痫和 IUGR 方面表现良好
作为护理标准的高成本诊断方法。在目标 1 中,我们将验证基于超声的 IUGR
检测算法违反护理标准(二维胎儿成像)。在目标 2 中,我们将验证
针对金标准血压设备和临床的孕产妇高血压和先兆子痫算法
风险预测工具。在目标 3 中,我们将实现目标 1 和 中验证的算法的实时版本
2 并在边缘计算系统上实现它们以进行现场测试。本提案的顺利完成将
产生了一种新颖且具有成本效益的方法来筛查孕产妇高血压、先兆子痫和 IUGR
使用连接到低成本、支持人工智能的边缘计算系统的护理点多普勒,适合广泛使用
在资源匮乏的环境中。该提案具有创新性,因为它使用了人工智能方法
广泛使用的护理点多普勒设备提供及时检测高影响的新方法
母婴状况。我们的结果将为大规模部署新的孕产妇和
胎儿筛查技术预计将对母婴发病率产生重大影响
改善及时筛查的机会。这项研究符合 NICHD 的使命,即增进对
通过促进预防孕产妇、婴儿和儿童的策略来怀孕、胎儿发育和出生
通过成本损失的高影响力筛查技术降低死亡率和发病率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gari David Clifford其他文献
Gari David Clifford的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gari David Clifford', 18)}}的其他基金
Artificial Intelligence Applied to Video and Speech for Objectively Evaluating Social Interaction and Depression in Mild Cognitive Impairment
人工智能应用于视频和语音,客观评估轻度认知障碍患者的社交互动和抑郁情况
- 批准号:
10810965 - 财政年份:2023
- 资助金额:
$ 61.92万 - 项目类别:
AI-driven low-cost ultrasound for automated quantification of hypertension, preeclampsia, and IUGR
AI 驱动的低成本超声可自动量化高血压、先兆子痫和 IUGR
- 批准号:
10567313 - 财政年份:2022
- 资助金额:
$ 61.92万 - 项目类别:
Methods and Tools for Integrating Pathomics Data into Cancer Registries
将病理组学数据整合到癌症登记处的方法和工具
- 批准号:
10405657 - 财政年份:2018
- 资助金额:
$ 61.92万 - 项目类别:
Methods and Tools for Integrating Pathomics Data into Cancer Registries
将病理组学数据整合到癌症登记处的方法和工具
- 批准号:
10247096 - 财政年份:2018
- 资助金额:
$ 61.92万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Accelerating Genomic Data Sharing and Collaborative Research with Privacy Protection
通过隐私保护加速基因组数据共享和协作研究
- 批准号:
10735407 - 财政年份:2023
- 资助金额:
$ 61.92万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 61.92万 - 项目类别:
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
- 批准号:
10725500 - 财政年份:2023
- 资助金额:
$ 61.92万 - 项目类别:
Hybrid Model-Based and Data-Driven Frameworks for High-Resolution Tomographic Imaging
基于混合模型和数据驱动的高分辨率断层成像框架
- 批准号:
10714540 - 财政年份:2023
- 资助金额:
$ 61.92万 - 项目类别:
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
- 批准号:
10736293 - 财政年份:2023
- 资助金额:
$ 61.92万 - 项目类别: