Methods and Tools for Integrating Pathomics Data into Cancer Registries
将病理组学数据整合到癌症登记处的方法和工具
基本信息
- 批准号:10405657
- 负责人:
- 金额:$ 60.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:Advanced DevelopmentAlgorithmic SoftwareAlgorithmsAnatomyAreaAutomobile DrivingBiological AssayBiological MarkersCell NucleusClassificationClinicalClinical DataCohort StudiesCollaborationsCommunitiesCuesDataData SetDevelopmentDiagnosticDiseaseDisease ProgressionEnsureEnvironmentEvaluation StudiesExhibitsEyeGoalsHistopathologyHumanImageImaging DeviceInformaticsInfrastructureIntraobserver VariabilityInvestigationKentuckyLinkLymphomaMalignant NeoplasmsMalignant neoplasm of prostateMapsMethodologyMethodsModernizationMorphologyNew JerseyNon-Small-Cell Lung CarcinomaNuclearOutcomePathologyPathology ReportPatientsPerceptionPhasePhenotypePopulationProcessRegistriesReproducibilityResearchResearch PersonnelResolutionRetrievalScienceScientific EvaluationSiteSlideSpecimenTestingTextureTissuesTranscendTumor SubtypeTumor-Infiltrating LymphocytesUniversitiesValidationVisualVisualizationWorkanalytical toolbasecohortcomputer infrastructurecomputing resourcesdata managementdata registrydigital pathologyepidemiology studyfeature extractionimage archival systemimage visualizationimprovedinformatics infrastructureinterestmachine learning classificationneoplasm registrypathology imagingpatient populationpatient stratificationpopulation basedprecision medicineprognosticprototyperepositoryscale upstemtherapeutic effectivenesstooltreatment responsetumortumor registryvalidation studieswhole slide imaging
项目摘要
The goal of this project is to enrich SEER registry data with high‐quality population‐based
biospecimen data in the form of digital pathology, machine learning based classifications and
quantitative pathomics feature sets. We will create a well‐curated repository of high‐quality
digitized pathology images for subjects whose data is being collected by the registries. These
images will be processed to extract computational features and establish deep linkages with
registry data, thus enabling the creation of information‐rich, population cohorts containing
objective imaging and clinical attributes. Specific examples of digital Pathology derived feature
sets include quantification of tumor infiltrating lymphocytes and segmentation and
characterization of cancer or stromal nuclei. Features will also include spectral and spatial
signatures of the underlying pathology. The scientific premise for this approach stems from
increasing evidence that information extracted from digitized pathology images
(pathomic features) are a quantitative surrogate of what is described in a pathology report. The
important distinction being that these features are quantitative and reproducible, unlike human
observations that are highly qualitative and subject to a high degree of inter‐ and intra‐observer
variability. This dataset will provide, a unique, population‐wide tissue based view of cancer,
and dramatically accelerate our understanding of the stages of disease progression, cancer
outcomes, and predict and assess therapeutic effectiveness.
This work will be carried out in collaboration with three SEER registries. We will partner
with The New Jersey State Cancer Registry during the development phase of the project (UG3).
During the validation phase of the project (UH3), the Georgia and Kentucky State Cancer
Registries will join the project. The infrastructure will be developed in close collaboration with
SEER registries to ensure consistency with registry processes, scalability and ability support
creation of population cohorts that span multiple registries. We will deploy visual analytic tools
to facilitate the creation of population cohorts for epidemiological studies, tools to support
visualization of feature clusters and related whole‐slide images while providing advanced
algorithms for conducting content based image retrieval. The scientific validation of the
proposed environment will be undertaken through three studies in Prostate Cancer, Lymphoma
and NSCLC, led by investigators at the three sites.
该项目的目标是通过高质量的基于人群的数据来丰富 SEER 注册数据。
数字病理学形式的生物样本数据、基于机器学习的分类和
我们将创建一个精心策划的高质量存储库。
登记处收集数据的受试者的数字化病理图像。
图像将被处理以提取计算特征并与
登记数据,从而能够创建信息丰富的人口队列,其中包含
客观成像和临床属性的数字病理学衍生特征的具体示例。
组包括肿瘤浸润淋巴细胞的量化和分割
癌症或基质核的特征还包括光谱和空间特征。
这种方法的科学前提源于潜在病理学的特征。
越来越多的证据表明从数字化病理图像中提取的信息
(病理特征)是病理报告中描述内容的定量替代。
重要的区别是这些特征是定量的和可重复的,与人类不同
高度定性的观察结果,并受到观察者之间和观察者内部的高度重视
该数据集将提供一种独特的、基于人群的组织的癌症视图,
并极大地加速我们对疾病进展阶段、癌症的理解
结果,并预测和评估治疗效果。
这项工作将与三个 SEER 注册机构合作开展。
在项目开发阶段 (UG3) 与新泽西州癌症登记处合作。
在该项目 (UH3) 的验证阶段,佐治亚州和肯塔基州癌症中心
注册管理机构将加入该项目,并与该项目密切合作开发基础设施。
SEER 注册机构确保注册流程、可扩展性和能力支持的一致性
创建跨越多个登记处的人口群体。我们将部署视觉分析工具。
促进流行病学研究人群队列的创建,支持工具
特征簇和相关全幻灯片图像的可视化,同时提供先进的
进行基于内容的图像检索的算法。
拟议的环境将通过前列腺癌、淋巴瘤的三项研究进行
和非小细胞肺癌,由三个地点的研究人员领导。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Differentiation among prostate cancer patients with Gleason score of 7 using histopathology whole-slide image and genomic data.
使用组织病理学全切片图像和基因组数据区分格里森评分为 7 的前列腺癌患者。
- DOI:
- 发表时间:2018-02
- 期刊:
- 影响因子:0
- 作者:Ren, Jian;Karagoz, Kubra;Gatza, Michael;Foran, David J;Qi, Xin
- 通讯作者:Qi, Xin
Computer aided analysis of prostate histopathology images to support a refined Gleason grading system.
计算机辅助分析前列腺组织病理学图像,以支持完善的格里森分级系统。
- DOI:
- 发表时间:2017-01
- 期刊:
- 影响因子:0
- 作者:Ren, Jian;Sadimin, Evita;Foran, David J;Qi, Xin
- 通讯作者:Qi, Xin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gari David Clifford其他文献
Gari David Clifford的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gari David Clifford', 18)}}的其他基金
Artificial Intelligence Applied to Video and Speech for Objectively Evaluating Social Interaction and Depression in Mild Cognitive Impairment
人工智能应用于视频和语音,客观评估轻度认知障碍患者的社交互动和抑郁情况
- 批准号:
10810965 - 财政年份:2023
- 资助金额:
$ 60.3万 - 项目类别:
AI-driven low-cost ultrasound for automated quantification of hypertension, preeclampsia, and IUGR
AI 驱动的低成本超声可自动量化高血压、先兆子痫和 IUGR
- 批准号:
10708135 - 财政年份:2022
- 资助金额:
$ 60.3万 - 项目类别:
AI-driven low-cost ultrasound for automated quantification of hypertension, preeclampsia, and IUGR
AI 驱动的低成本超声可自动量化高血压、先兆子痫和 IUGR
- 批准号:
10567313 - 财政年份:2022
- 资助金额:
$ 60.3万 - 项目类别:
Methods and Tools for Integrating Pathomics Data into Cancer Registries
将病理组学数据整合到癌症登记处的方法和工具
- 批准号:
10247096 - 财政年份:2018
- 资助金额:
$ 60.3万 - 项目类别:
相似国自然基金
能量一阶导数的GPU算法和异构并行计算:WESP软件的发展和向国产异构平台的移植
- 批准号:22373112
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
机理与数据耦合驱动的AI赋能工业软件理论与算法
- 批准号:52335001
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
面向量子模拟算法的量子软件优化技术研究
- 批准号:62302395
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高吞吐低时延的多元LDPC码译码算法及其软件架构研究
- 批准号:62301029
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
凸复合二次锥优化问题的算法及软件研究
- 批准号:12271015
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
相似海外基金
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
- 批准号:
10735564 - 财政年份:2023
- 资助金额:
$ 60.3万 - 项目类别:
Accelerating genomic analysis for time critical clinical applications
加速时间紧迫的临床应用的基因组分析
- 批准号:
10593480 - 财政年份:2023
- 资助金额:
$ 60.3万 - 项目类别:
Functional Connectivity and Baseline Networks of the White Matter Brain: Development and Dissemination of Algorithms and Tools
白质脑的功能连接和基线网络:算法和工具的开发和传播
- 批准号:
10391136 - 财政年份:2022
- 资助金额:
$ 60.3万 - 项目类别:
IMAT-ITCR Collaboration: Develop deep learning-based methods to identify subtypes of circulating tumor cells from optical microscope images
IMAT-ITCR 合作:开发基于深度学习的方法,从光学显微镜图像中识别循环肿瘤细胞的亚型
- 批准号:
10675886 - 财政年份:2022
- 资助金额:
$ 60.3万 - 项目类别:
OCT and OCTA image processing for retinal assessment of people with MS
用于多发性硬化症患者视网膜评估的 OCT 和 OCTA 图像处理
- 批准号:
10580693 - 财政年份:2021
- 资助金额:
$ 60.3万 - 项目类别: