Interpretable graphical models for large multi-modal COPD data (R01HL159805)
大型多模态 COPD 数据的可解释图形模型 (R01HL159805)
基本信息
- 批准号:10689574
- 负责人:
- 金额:$ 50.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-25 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAlgorithmsAreaBiological MarkersCancer PatientCause of DeathChronic Obstructive Pulmonary DiseaseChronic lung diseaseClassificationClinicalClinical DataCombined Modality TherapyComplexComputer softwareDataData AnalysesData CollectionData SetDiagnostic ProcedureDiseaseDisease ProgressionDoseEvaluationExplosionFaceGeneticGenomicsGrantGraphHealth Care CostsHospitalsImageInternetJointsKnowledgeLearningLettersLibrariesLung noduleMachine LearningMalignant NeoplasmsMalignant neoplasm of lungMedicalMedicineMethodologyMethodsModalityModelingOutcomePathogenesisPatientsPneumoniaProbabilityProcessProductionPropertyPythonsResearchResearch PersonnelRisk FactorsSamplingSeriesSystemTheoretical modelTimeTrainingValidationbiomarker selectioncancer therapyclinical developmentclinically relevantcohortdata streamsdeep learningdisabilitydiverse dataflexibilitygraph learninghigh dimensionalitymachine learning methodmicrobiomemodifiable riskmortalitymultimodal datamultimodalitynon-Gaussian modelnovelpersonalized medicineprecision medicinepredictive modelingprogramsradiological imagingrandom forestsuccesstheoriestoolweb portalweb server
项目摘要
INTERPRETABLE GRAPHICAL MODELS FOR LARGE MULTI-MODAL COPD DATA
ABSTRACT
One of the most important tasks in today’s era of precision medicine is to understand the mechanisms and the
factors affecting the development of clinical outcomes. Another important task is to develop interpretable,
predictive models for outcomes. In the last years, many machine learning methods have dominated the task of
predictive modeling, including deep learning, random forests and others. They are fueled by the unprecedent
volume of data that have been generated in some research areas. However, the interpretability of these methods
is not straight forward and their accuracy decreases when only small to medium size training datasets are
available. Furthermore, their predictive models do not uncover the complex web of interactions between other
variables in the dataset, which is essential for fully understanding disease mechanisms. Also, most such methods
are not well suited to accommodate mixed data types (e.g., continuous, discrete) in the same dataset.
Probabilistic graphical models (PGMs) offer a promising alternative to classical machine learning methods,
because they are flexible and versatile. They can identify both the direct (causal) relations between variables,
pointing to disease mechanisms, and build predictive models over diverse data, with good results even with
smaller training datasets. They have been used for classification, biomarker selection, identification of modifiable
risk factors of an outcome, or for mechanistic studies of perturbations of disease networks. In the previous years
we extended the PGM theoretical framework to the analysis of mixed continuous and discrete variables, with or
without unmeasured confounders; and we can now evaluate and incorporate prior information in mixed data
graph learning. We successfully applied those methods to diverse clinically important problems, including
malignancy prediction of undetermined lung nodules, identification of microbiome and other factors affecting
pneumonia, selection of SNP biomarkers for combination treatment of cancer patients.
Our objective is to develop novel interpretable methods for analysis of any-type data and use them to address
clinically relevant questions in COPD, an important chronic lung disease. Method evaluation will be done on
synthetic and real data, including parallel datasets with genomic, genetic, imaging and clinical COPD data. Our
central aim is to identify factors of disease mechanisms of progression using different modalities of patient data.
The deliverables will be (1) new PGM approaches for integrative analysis of any-type data; (2) a new, fully
documented software package (in R, Python) that can be incorporated in other pipelines; (3) a new web portal
to disseminate our methodologies to non-computer-savvy COPD researchers; (4) results on the pathogenesis
and predictive features of chronic obstructive pulmonary disease (COPD). This cross-disciplinary team project
is expected to have a positive impact beyond the above deliverables, since the generality of our approaches
makes them suitable for studying any disease; and they can be easily integrated into personalized medicine
strategies when high-throughput data collection will become a routine diagnostic procedure in all hospitals.
大型多模态 COPD 数据的可解释图形模型
抽象的
当今精准医学时代最重要的任务之一是了解其机制和作用
影响临床结果发展的因素另一个重要任务是开发可解释的、
在过去的几年里,许多机器学习方法主导了结果的预测模型。
预测模型,包括深度学习、随机森林等,都是由前所未有的技术推动的。
一些研究领域产生的数据量很大,但是这些方法的可解释性。
并不简单,当仅使用中小型训练数据集时,其准确性会降低
此外,他们的预测模型并没有揭示其他人之间复杂的相互作用网络。
数据集中的变量,这对于充分理解疾病机制至关重要。
不太适合在同一数据集中容纳混合数据类型(例如连续、离散)。
概率图模型(PGM)为经典机器学习方法提供了一种有前景的替代方案,
因为它们灵活且用途广泛,可以识别变量之间的直接(因果)关系,
指出疾病机制,并根据不同的数据建立预测模型,即使使用
它们已用于分类、生物标志物选择、可修改的识别。
结果的危险因素,或用于前几年疾病网络扰动的机制研究。
我们将 PGM 理论框架扩展到混合连续变量和离散变量的分析,其中或
没有未测量的混杂因素;我们现在可以评估混合数据中的先验信息;
我们成功地将这些方法应用于各种临床重要问题,包括
未确定的肺结节的恶性预测、微生物组的鉴定和其他影响因素
肺炎,SNP生物标志物的选择用于癌症患者的联合治疗。
我们的目标是开发新颖的可解释方法来分析任何类型的数据,并用它们来解决
慢性阻塞性肺病(一种重要的慢性肺部疾病)的临床相关问题将进行方法评估。
合成数据和真实数据,包括基因组、遗传、成像和临床慢性阻塞性肺病数据的并行数据集。
中心目标是利用不同方式的患者数据来确定疾病进展机制的因素。
可交付成果将是 (1) 用于对任何类型数据进行综合分析的新 PGM 方法;(2) 一种新的、全面的方法;
(3)新的门户网站
向不懂计算机的慢性阻塞性肺病研究人员传播我们的方法;(4) 发病机制的结果;
这个跨学科团队项目。
由于我们方法的普遍性,预计将产生超出上述可交付成果的积极影响
使它们适合研究任何疾病,并且可以轻松集成到个性化医疗中;
当高通量数据收集将成为所有医院的常规诊断程序时的策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PANAGIOTIS V BENOS其他文献
PANAGIOTIS V BENOS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PANAGIOTIS V BENOS', 18)}}的其他基金
COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS R01HL157879
使用集成概率图形模型进行 COPD 亚型和早期预测 R01HL157879
- 批准号:
10705838 - 财政年份:2022
- 资助金额:
$ 50.18万 - 项目类别:
COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS R01HL157879
使用集成概率图形模型进行 COPD 亚型和早期预测 R01HL157879
- 批准号:
10689580 - 财政年份:2022
- 资助金额:
$ 50.18万 - 项目类别:
COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS
使用综合概率图模型进行慢性阻塞性肺病亚型和早期预测
- 批准号:
10206417 - 财政年份:2021
- 资助金额:
$ 50.18万 - 项目类别:
Interpretable graphical models for large multi-modal COPD data (R01HL159805)
大型多模态 COPD 数据的可解释图形模型 (R01HL159805)
- 批准号:
10705824 - 财政年份:2021
- 资助金额:
$ 50.18万 - 项目类别:
Systems Biology of Diffusion Impairment in HIV
HIV扩散损伤的系统生物学
- 批准号:
10188612 - 财政年份:2018
- 资助金额:
$ 50.18万 - 项目类别:
相似国自然基金
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
- 批准号:72302005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
- 批准号:
10736293 - 财政年份:2023
- 资助金额:
$ 50.18万 - 项目类别:
In vivo Evaluation of Lymph Nodes Using Quantitative Ultrasound
使用定量超声对淋巴结进行体内评估
- 批准号:
10737152 - 财政年份:2023
- 资助金额:
$ 50.18万 - 项目类别:
Social media as a social mechanism of non-cigarette tobacco use: Engaging young adults to examine tobacco culture online
社交媒体作为非卷烟烟草使用的社会机制:让年轻人在线审视烟草文化
- 批准号:
10667700 - 财政年份:2023
- 资助金额:
$ 50.18万 - 项目类别:
Bayesian approaches to identify persons with osteoarthritis in electronic health records and administrative health data in the absence of a perfect reference standard
在缺乏完美参考标准的情况下,贝叶斯方法在电子健康记录和管理健康数据中识别骨关节炎患者
- 批准号:
10665905 - 财政年份:2023
- 资助金额:
$ 50.18万 - 项目类别:
Noninvasive prediction of skin precancer severity using in vivo cellular imaging and deep learning algorithms.
使用体内细胞成像和深度学习算法无创预测皮肤癌前病变的严重程度。
- 批准号:
10761578 - 财政年份:2023
- 资助金额:
$ 50.18万 - 项目类别: