COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS R01HL157879
使用集成概率图形模型进行 COPD 亚型和早期预测 R01HL157879
基本信息
- 批准号:10689580
- 负责人:
- 金额:$ 72.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-24 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAreaAsthmaBiologyBloodCause of DeathCharacteristicsChronic DiseaseChronic Obstructive Pulmonary DiseaseClassificationClinicalClinical DataCollaborationsComplexComputing MethodologiesDataData CollectionData SetDetectionDevelopmentDiseaseDisease ManagementDisease ProgressionDisease modelEnrollmentEnsureEtiologyFunctional ImagingFutureGene ExpressionGene Expression ProfileGene Expression ProfilingGenesGeneticGenetic DiseasesGenomicsGraphHealth Care CostsImageIncidenceIndividualLeadLinkMachine LearningMeasurementMedicineMethodologyMethodsModalityModelingMolecularMolecular TargetMultiomic DataNatureOnset of illnessPathway interactionsPatientsPatternPhenotypePulmonary function testsPulmonologyResearchResearch PersonnelSamplingScienceSeveritiesSeverity of illnessStable DiseaseSymptomsSyndromeSystemTestingTimeTissuesTrainingValidationVisitX-Ray Computed Tomographyairway obstructionanalytical methodbasecellular targetingchest computed tomographyclinical practiceclinical subtypesclinically relevantcohortcomputer frameworkcomputerized toolsdata integrationdata modelingdiagnostic tooldisabilitydisease phenotypedisorder subtypefollow-upgenetic variantgenomic dataimaging geneticsimprovedinnovationinsightlearning algorithmmortalitymortality riskmultimodal datamultimodalitymultiscale dataperipheral bloodpersonalized predictionspersonalized therapeuticprecision medicinepredictive modelingprognostic toolprognostic valuepulmonary functionradiological imagingsuccesstreatment guidelinesunsupervised learningvector
项目摘要
COPD SUBTYPING AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL
MODELS
ABSTRACT
One of the main obstacles in developing efficient personalized therapeutic and disease management strategies
is that most common diseases are typically defined based on symptoms and clinical measurements, although
they are believed to be syndromes, consisting of multiple subtypes with variable etiology. Identifying disease
subtypes has thus become very important, but so far it has been met with limited success for most diseases. In
asthma, a notable exception, it was the clinical characterization that led to successful subtyping; and this is now
incorporated in treatment guidelines. Unsupervised machine learning approaches of single data modalities (e.g.,
omics, radiographic images) have not produced actionable subtypes due to instability across cohorts. Developing
data integrative approaches for multi-scale data, which are becoming available for a number of diseases, is
expected to lead to robust subtyping and provide mechanistic insights of disease onset and progression.
This proposal focuses on developing new computational methods, based on probabilistic graphical models
(PGMs), to address this unmet need; and apply them to investigate three problems of clinical importance in
chronic obstructive pulmonary disease (COPD), which is the fourth leading cause of mortality in USA. Our
underlying hypothesis is that PGMs can integrate and analyze under the same probabilistic framework
heterogeneous biomedical data (omics, chest CT scan, clinical) and identify disease subtypes and their main
determinants. The objectives of our proposal is to build a comprehensive computational framework for disease
subclassification, identify stable COPD subtypes at the baseline and longitudinally, and build interpretable
models of the disease The deliverables of this project are: (1) new integrative computational approaches for
clinical subtyping from multi-scale data; (2) new predictors of COPD progression and severity; (3) new
discoveries of longitudinally stable COPD subtypes; (4) new predictors of future development of COPD; (5) new
omics datasets that will be invaluable to future research in the area (baseline and longitudinal).
To ensure the success of the project we follow a team science approach. This multi-PI proposal builds on the
ongoing efforts of our group in the area of graphical models and their applications in biomedicine; and the
ongoing collaboration of the three PIs that have complementary strengths: Prof. Benos (systems medicine and
machine learning), Dr. Hersh (COPD genetics and genomics) and Dr. Sciurba (clinical aspects of COPD). It is
powered by the access of the investigators to three major COPD cohorts (COPDGene®, SCCOR, ECLIPSE) that
contain multiple parallel deep phenotyping and omics data from thousands of patients and controls. Although in
this project we focus on COPD, our methods are generally applicable to any disease, therefore our project will
have a positive impact beyond the above deliverables. We believe that due to their robust nature and
interpretability, PGMs will soon become the norm for multi-scale biomedical data integration and modeling, when
genetic and genomic data collection will become routine prognostic and diagnostic tools in clinical practice.
使用综合概率图进行 COPD 亚型分类和早期预测
型号
抽象的
制定有效的个性化治疗和疾病管理策略的主要障碍之一
最常见的疾病通常是根据症状和临床测量来定义的,
它们被认为是由具有不同病因的多种亚型组成的综合征。
因此,亚型变得非常重要,但迄今为止,它在大多数疾病中取得的成功有限。
哮喘是一个值得注意的例外,正是临床特征导致了成功的亚型分型;
纳入治疗指南。单一数据模式的无监督机器学习方法(例如,
由于队列之间的不稳定,组学、放射图像)尚未产生可操作的亚型。
多尺度数据的数据集成方法正在可用于许多疾病
预计将导致强大的亚型分析并提供疾病发作和进展的机制见解。
该提案侧重于开发基于概率图模型的新计算方法
(PGM),解决这一未满足的需求;并应用它们来研究三个具有临床重要性的问题;
慢性阻塞性肺疾病(COPD)是美国第四大死亡原因。
基本假设是 PGM 可以在相同的概率框架下进行整合和分析
异质生物医学数据(组学、胸部 CT 扫描、临床)并识别疾病亚型及其主要亚型
我们提案的目标是建立一个全面的疾病计算框架。
细分,在基线和纵向上确定稳定的 COPD 亚型,并建立可解释的
该项目的可交付成果是:(1)新的综合计算方法
来自多尺度数据的临床亚型;(2) COPD 进展和严重程度的新预测因子;(3) 新的预测因子;
长期稳定的慢性阻塞性肺病亚型的发现;(4) 慢性阻塞性肺病未来发展的新预测因素;
组学数据集对该领域的未来研究(基线和纵向)非常有价值。
为了确保该项目的成功,我们遵循团队科学方法,该多 PI 提案建立在
我们小组在图形模型及其在生物医学中的应用领域的持续努力;
三位具有互补优势的 PI 正在进行合作:Benos 教授(系统医学和
机器学习)、Hersh 博士(慢性阻塞性肺病遗传学和基因组学)和 Sciurba 博士(慢性阻塞性肺病的临床方面)。
得益于研究人员对三个主要 COPD 队列(COPDGene®、SCCOR、ECLIPSE)的访问,
包含来自数千名患者和对照的多个并行深度表型分析和组学数据。
这个项目我们专注于慢性阻塞性肺病,我们的方法一般适用于任何疾病,因此我们的项目将
我们相信,由于其强大的性质和能力,它们会产生超出上述可交付成果的积极影响。
由于可解释性,PGM 将很快成为多尺度生物医学数据集成和建模的规范,当
遗传和基因组数据收集将成为临床实践中的常规预后和诊断工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PANAGIOTIS V BENOS其他文献
PANAGIOTIS V BENOS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PANAGIOTIS V BENOS', 18)}}的其他基金
COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS R01HL157879
使用集成概率图形模型进行 COPD 亚型和早期预测 R01HL157879
- 批准号:
10705838 - 财政年份:2022
- 资助金额:
$ 72.36万 - 项目类别:
COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS
使用综合概率图模型进行慢性阻塞性肺病亚型和早期预测
- 批准号:
10206417 - 财政年份:2021
- 资助金额:
$ 72.36万 - 项目类别:
Interpretable graphical models for large multi-modal COPD data (R01HL159805)
大型多模态 COPD 数据的可解释图形模型 (R01HL159805)
- 批准号:
10705824 - 财政年份:2021
- 资助金额:
$ 72.36万 - 项目类别:
Interpretable graphical models for large multi-modal COPD data (R01HL159805)
大型多模态 COPD 数据的可解释图形模型 (R01HL159805)
- 批准号:
10689574 - 财政年份:2021
- 资助金额:
$ 72.36万 - 项目类别:
Systems Biology of Diffusion Impairment in HIV
HIV扩散损伤的系统生物学
- 批准号:
10188612 - 财政年份:2018
- 资助金额:
$ 72.36万 - 项目类别:
相似国自然基金
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
- 批准号:62303197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
- 批准号:12371366
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
- 批准号:12301508
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
- 批准号:62303204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
集装箱港口装卸运输区域基于碳配额碳交易的运营优化模型和算法研究
- 批准号:72271152
- 批准年份:2022
- 资助金额:44 万元
- 项目类别:面上项目
相似海外基金
Incorporating residential histories into assessment of cancer risk in a predominantly low-income and racially diverse population
将居住史纳入以低收入和种族多元化为主的人群的癌症风险评估中
- 批准号:
10735164 - 财政年份:2023
- 资助金额:
$ 72.36万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 72.36万 - 项目类别:
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
- 批准号:
10736293 - 财政年份:2023
- 资助金额:
$ 72.36万 - 项目类别:
In vivo Evaluation of Lymph Nodes Using Quantitative Ultrasound
使用定量超声对淋巴结进行体内评估
- 批准号:
10737152 - 财政年份:2023
- 资助金额:
$ 72.36万 - 项目类别:
A Novel Algorithm to Identify People with Undiagnosed Alzheimer's Disease and Related Dementias
一种识别未确诊阿尔茨海默病和相关痴呆症患者的新算法
- 批准号:
10696912 - 财政年份:2023
- 资助金额:
$ 72.36万 - 项目类别: