Developing Statistical Methods on Event History Data Subject to Data Complexities for HIV Disease Progression and Policy Evaluation
根据艾滋病毒疾病进展和政策评估的数据复杂性,开发事件历史数据的统计方法
基本信息
- 批准号:10700452
- 负责人:
- 金额:$ 26.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-16 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:Acquired Immunodeficiency SyndromeAddressAdoptedAdoptionAfricanBindingCD4 Lymphocyte CountCaringCellsCentral AfricaCessation of lifeCharacteristicsClinicClinicalCountryDataData CollectionDatabasesDevelopmentDiagnosisDiseaseDisease ProgressionDisease modelEffectivenessEligibility DeterminationEnrollmentEnsureEpidemicEpidemiologyEvaluationEventEvolutionFutureGuidelinesHIVHIV/AIDSIndividualInternationalInterventionInvestigationLaboratoriesMethodsModelingOutcomePatient CarePatient-Focused OutcomesPatientsPerformancePersonsPharmaceutical PreparationsPoliciesPolicy AnalysisPolicy DevelopmentsPopulation HeterogeneityProbabilityProceduresPrognostic FactorRandomized, Controlled TrialsRecommendationRecording of previous eventsResearchResearch PersonnelResource AllocationSample SizeSamplingSelection BiasSeverity of illnessStatistical MethodsStructureTestingTimeValidationWithdrawing CareWorkWorld Health Organizationantiretroviral therapyclinically relevantcohortdata complexitydemographicsdesignfollow-uphazardimprovedmortalityoutreachsemiparametrictrial design
项目摘要
PROJECT SUMMARY/ABSTRACT
In 2015, the World Health Organization (WHO) introduced Treat-All guidelines for people living with HIV, which
recommend immediate initiation of antiretroviral therapy (ART) treatment upon diagnosis regardless of disease
severity. Since then, most countries worldwide have adopted the policy. However, the understanding of the impact of
such policy is quite limited, especially regarding HIV disease progression. Focused on event history outcome
(represented by WHO clinical stages and death), we recently conducted a preliminary analysis. We used data from
the Central Africa region of the International epidemiology Database to Evaluate AIDS (CA-IeDEA) for a multistate
model based on a target trial design (where two cohorts were constructed, one before and one after the policy
adoption). This work illuminated several limitations. For example, the assumption of non-informative censoring was
unlikely to hold for all censored individuals due to loss of follow-up or transfer out. Also, the relatively small sample
size of the CA-IeDEA hindered our capacities to 1) explore more clinically relevant and biologically plausible models
for HIV disease progression and 2) explore population heterogeneities regarding the impact of the Treat-All on the
outcome. In the proposed study, we plan to address these limitations by developing new statistical methods and
leveraging the multi-regional, i.e., the global-IeDEA data, which will provide a substantially larger sample. We will
develop procedures to address informative (dependent) censoring for the multistate models under the target trial
design to allow for sensitivity analysis. For example, we propose parametric, nonparametric, and semi-parametric
approaches to handle censoring at random. In addition, we offer a controlled multiple imputation method to handle
censoring not at random. We will compare and validate those methods using both internal and external data. Finally,
we will comprehensively analyze the global-IeDEA data, where the sensitivity analysis will ensure the robustness of
our findings. The proposed work will advance research in HIV care by providing more detailed information on possible
evolutionary courses of HIV disease progression and factors that modify the effectiveness of Treat-All. Our analysis
is a first step towards developing more precise patient treatment options and resource allocation, thereby improving
patient outcomes. The proposed statistical methods may also have applications to model other diseases that evolve
through predefined clinical states with intermittent data collection schema subject to similar data complexities.
项目概要/摘要
2015 年,世界卫生组织 (WHO) 推出了针对艾滋病毒感染者的“Treat-All”指南,该指南
建议诊断后立即开始抗逆转录病毒疗法(ART)治疗,无论疾病如何
严重程度。此后,世界上大多数国家都采取了这一政策。然而,对影响的理解
此类政策相当有限,特别是在艾滋病毒疾病进展方面。关注事件历史结果
(以WHO临床分期和死亡为代表),我们最近进行了初步分析。我们使用的数据来自
中部非洲地区多州艾滋病评估国际流行病学数据库 (CA-IeDEA)
基于目标试验设计的模型(其中构建了两个队列,一组在政策实施之前,一组在政策实施之后)
采用)。这项工作阐明了一些局限性。例如,非信息审查的假设是
由于失去后续行动或转出,不太可能适用于所有受审查的个人。而且样本相对较小
CA-IeDEA 的规模阻碍了我们 1) 探索更多临床相关性和生物学合理模型的能力
2) 探索关于Treat-All对HIV疾病进展的人群异质性
结果。在拟议的研究中,我们计划通过开发新的统计方法和
利用多区域数据,即全球 IeDEA 数据,这将提供更大的样本。我们将
制定程序来解决目标试验下多状态模型的信息(依赖)审查问题
设计允许进行敏感性分析。例如,我们提出参数、非参数和半参数
处理随机审查的方法。此外,我们提供了一种受控多重插补方法来处理
审查不是随机的。我们将使用内部和外部数据来比较和验证这些方法。最后,
我们将全面分析全球IeDEA数据,其中敏感性分析将确保数据的稳健性
我们的发现。拟议的工作将通过提供有关可能的更详细信息来推进艾滋病毒护理研究
HIV 疾病进展的进化过程以及改变 Treat-All 有效性的因素。我们的分析
是开发更精确的患者治疗方案和资源分配的第一步,从而改善
患者的结果。所提出的统计方法也可能应用于模拟其他进化疾病
通过具有类似数据复杂性的间歇性数据收集模式的预定义临床状态。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Denis Nash其他文献
Denis Nash的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Denis Nash', 18)}}的其他基金
Understand and mitigating the influence of extreme weather events on HIV outcomes: A global investigation
了解并减轻极端天气事件对艾滋病毒感染结果的影响:一项全球调查
- 批准号:
10762607 - 财政年份:2023
- 资助金额:
$ 26.08万 - 项目类别:
Brief digital intervention to increase COVID-19 vaccination among individuals with anxiety or depression
简短的数字干预措施可增加焦虑或抑郁患者的 COVID-19 疫苗接种
- 批准号:
10613750 - 财政年份:2022
- 资助金额:
$ 26.08万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The University of Miami AIDS Research Center on Mental Health and HIV/AIDS - Center for HIV & Research in Mental Health (CHARM)Research Core - EIS
迈阿密大学艾滋病心理健康和艾滋病毒/艾滋病研究中心 - Center for HIV
- 批准号:
10686546 - 财政年份:2023
- 资助金额:
$ 26.08万 - 项目类别:
Intersectional Stigma Reduction for Tajik Migrants Who Inject Drugs
减少注射毒品的塔吉克移民的跨部门耻辱
- 批准号:
10755435 - 财政年份:2023
- 资助金额:
$ 26.08万 - 项目类别:
Long-acting multi prevention implant for 2-year contraception and HIV PrEP
用于 2 年避孕和 HIV PrEP 的长效多重预防植入物
- 批准号:
10619811 - 财政年份:2023
- 资助金额:
$ 26.08万 - 项目类别:
Developing a regionally representative risk assessment tool to identify men at highest risk of HIV acquisition in sub-Saharan Africa
开发具有区域代表性的风险评估工具,以确定撒哈拉以南非洲地区感染艾滋病毒风险最高的男性
- 批准号:
10762645 - 财政年份:2023
- 资助金额:
$ 26.08万 - 项目类别:
Applying Deep Learning for Predicting Retention in PrEP Care and Effective PrEP Use among Key Populations at Risk for HIV in Thailand
应用深度学习预测泰国主要艾滋病毒高危人群中 PrEP 护理的保留情况以及 PrEP 的有效使用
- 批准号:
10619943 - 财政年份:2023
- 资助金额:
$ 26.08万 - 项目类别: