NIH resubmission Deyu Li - Etheno adductome and repair pathways
NIH 重新提交 Deyu Li - 乙烯加合组和修复途径
基本信息
- 批准号:10659931
- 负责人:
- 金额:$ 38.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-10 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AffectAlkylationAmino Acid SequenceBase Excision RepairsCarcinogensCellsChromatinChronicClipComplexCore ProteinDataDealkylationDevelopmentDioxygenasesDisciplineDiseaseEnzymesEpigenetic ProcessEukaryotic CellExcision RepairFamilyFingerprintFutureGeneticGenomic InstabilityGoalsHealthHistonesHumanHydroxyl RadicalInfectionInflammationInflammatoryKnowledgeLarge Intestine CarcinomaLesionLinkLipid PeroxidationLung AdenocarcinomaMalignant NeoplasmsMethodsMolecularMutationN-terminalNeoplastic Cell TransformationNucleosome Core ParticleOrganismOxidative StressPathway interactionsPatternPoisson DistributionPopulationPositioning AttributeProcessProductivityProteinsProteolytic ProcessingReactionReportingResearchResearch Project GrantsSiteTailTechniquesTestingTherapeuticUnited States National Institutes of HealthUniversitiesVariantVinyl ChlorideWorkadductalpha ketoglutaratebasecancer riskcarcinogenesiscarcinogenicitychronic infectionclinically relevantcytotoxicds-DNAepigenetic markerexperimental studyflexibilitygenome integrityimprovedin vivoinnovationmembernext generationnovelrepair enzymerepairedresponsetranslational potentialtranslational study
项目摘要
PROJECT SUMMARY
Chronic inflammation and persistent infection conditions have long been associated with increased risk of cancer.
Growing evidence suggests that cancer-associated inflammatory processes, such as lipid peroxidation, cause
genomic instability that can be linked to the development of carcinogenesis. Reactive species from lipid
peroxidation are known to damage DNA and form etheno-type adducts. Previously, four etheno DNA adducts
have been reported: 1,N6-ethenoadenine (εA), 3,N4-ethenocytosine (εC), 1,N2-ethenoguanine (1,N2-εG), and
N2,3-ethenoguanine (N2,3-εG). These etheno lesions are also generated by metabolites of the human carcinogen
vinyl chloride. Recently, a new etheno adduct, 3,N4-etheno-5-methylcytosine (ε5mC), was identified. It bears the
etheno damage on 5-methylcytosine, an important epigenetic marker in humans. Thus far, no information on the
repair and mutagenicity of ε5mC has been reported. Replication of the etheno lesions is known to cause
mutations and may constitute a critical step in the pathway leading to neoplastic transformation. Importantly for
cells, DNA repair pathways are the guardians of genomic integrity and function to return damaged DNA to its
canonical state. This research project focuses on two key repair pathways: base excision repair (BER) and direct
reversal repair (DRR). Most of the experiments that give rise to our current understanding of BER and DRR were
conducted using DNA oligomers. There is a fundamental gap in knowledge of how repair occurs in the context
of chromatin, where eukaryotic DNA is compacted in a complex hierarchy of DNA-protein interactions. At the
most fundamental level of chromatin organization, the nucleosome core particle (NCP) is the basic packaging
unit that is comprised of ds-DNA wrapped around a histone protein core. The overarching goal of the proposed
research is to understand how DNA sequence context and the packaging of DNA into chromatin influence repair
of the etheno adductome. The central hypothesis of this proposal is that BER and DRR enzymes repair etheno
lesions with different efficiencies, and these distinctive repair profiles are the result of 1) sequence context of the
lesion and interactions with the enzyme and 2) modulation of repair by the protein component of chromatin, the
histones. Guided by this novel hypothesis, strong preliminary data, and innovative techniques, the proposal
investigates three aims that: (1) define the sequence context effects (by considering the 5’ and 3’ neighboring
bases) of BER and DRR enzymes in unpackaged DNA oligomers; (2) characterize the repair profiles of the five
etheno adducts in NCPs; and (3) determine the extent to which tailless and variant histone proteins provide a
mechanism of modulating repair in chromatin. The proposed research is significant because it will reveal key
mechanisms and critical differences that influence repair of the etheno adductome and how cells minimize the
harmful consequences of these lesions. The results obtained in this work will explain in vivo observations of
alkylation damage profiles and contribute to our understanding of mutational hotspots and mutational signatures.
Therefore, the research has considerable translational potential to enhance our understanding of DNA repair
and the results can assist in the development of future therapeutic treatments that improve cellular defenses
against genomic instability.
项目概要
慢性炎症和持续感染状况长期以来一直与癌症风险增加有关。
越来越多的证据表明,与癌症相关的炎症过程,例如脂质过氧化,会导致
基因组不稳定性可能与脂质反应性物质的发生有关。
已知过氧化会损伤 DNA 并形成乙烯型 DNA 加合物,此前有四种乙烯型 DNA 加合物。
已报道:1,N6-乙烯腺嘌呤 (εA)、3,N4-乙烯胞嘧啶 (εC)、1,N2-乙烯鸟嘌呤 (1,N2-εG) 和
N2,3-乙烯鸟嘌呤 (N2,3-εG) 这些乙烯损伤也是由人类致癌物的代谢产物产生的。
最近,鉴定出一种新的乙烯加合物,3,N4-乙烯-5-甲基胞嘧啶(ε5mC)。
乙烯醇对 5-甲基胞嘧啶(人类重要的表观遗传标记)造成的损害迄今为止,尚无相关信息。
据报道,ε5mC 的修复和致突变性会导致乙烯损伤的复制。
突变可能构成导致肿瘤转化途径中的关键步骤。
在细胞中,DNA 修复途径是基因组完整性和功能的守护者,可将受损的 DNA 恢复到原来的状态。
该研究项目重点关注两个关键的修复途径:碱基切除修复(BER)和直接修复。
引起我们目前对 BER 和 DRR 理解的大部分实验都是通过逆向修复 (DRR) 进行的。
使用 DNA 寡聚物进行的修复在修复过程中如何发生的知识存在根本性差距。
染色质,真核 DNA 被压缩在 DNA-蛋白质相互作用的复杂层次结构中。
染色质组织的最基础层面,核小体核心颗粒(NCP)是基本包装
由包裹在组蛋白核心上的双链 DNA 组成的单元。 所提出的总体目标。
研究的目的是了解 DNA 序列背景和 DNA 包装到染色质中如何影响修复
该提案的中心假设是 BER 和 DRR 酶修复乙烯醇。
具有不同效率的损伤,这些独特的修复特征是 1) 的序列背景的结果
损伤和与酶的相互作用以及 2) 染色质蛋白质成分对修复的调节,
在这个新颖的假设、强有力的初步数据和创新技术的指导下,该提案。
研究了三个目标:(1) 定义序列上下文效应(通过考虑 5' 和 3' 相邻序列)
未包装 DNA 寡聚物中 BER 和 DRR 酶的碱基);(2) 表征五种修复特性;
NCP 中的乙烯加合物;(3) 确定无尾和变异组蛋白提供的程度
调节染色质修复的机制这项研究意义重大,因为它将揭示关键。
影响乙烯加合物修复的机制和关键差异以及细胞如何最大限度地减少
这些病变的有害后果将在这项工作中获得的结果解释体内观察结果。
烷基化损伤概况并有助于我们对突变热点和突变特征的理解。
因此,该研究具有巨大的转化潜力,可以增强我们对 DNA 修复的理解
研究结果可以帮助开发未来改善细胞防御的治疗方法
对抗基因组的不稳定性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Delaney其他文献
Sarah Delaney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Delaney', 18)}}的其他基金
Inflammation as a Mediator of Dynamic DNA Mutations
炎症作为动态 DNA 突变的中介
- 批准号:
8466972 - 财政年份:2010
- 资助金额:
$ 38.91万 - 项目类别:
Inflammation as a Mediator of Dynamic DNA Mutations
炎症作为动态 DNA 突变的中介
- 批准号:
8412815 - 财政年份:2010
- 资助金额:
$ 38.91万 - 项目类别:
Inflammation as a Mediator of Dynamic DNA Mutations
炎症作为动态 DNA 突变的中介
- 批准号:
8682820 - 财政年份:2010
- 资助金额:
$ 38.91万 - 项目类别:
Inflammation as a Mediator of Dynamic DNA Mutations
炎症作为动态 DNA 突变的中介
- 批准号:
7982878 - 财政年份:2010
- 资助金额:
$ 38.91万 - 项目类别:
Inflammation as a Mediator of Dynamic DNA Mutations
炎症作为动态 DNA 突变的中介
- 批准号:
8272599 - 财政年份:2010
- 资助金额:
$ 38.91万 - 项目类别:
Inflammation as a Mediator of Dynamic DNA Mutations
炎症作为动态 DNA 突变的中介
- 批准号:
8146923 - 财政年份:2010
- 资助金额:
$ 38.91万 - 项目类别:
GENETIC PROPERTIES OF DNA DAMAGE INDUCED BY PEROXYNITRITE
过氧亚硝酸盐引起的 DNA 损伤的遗传特性
- 批准号:
7960147 - 财政年份:2009
- 资助金额:
$ 38.91万 - 项目类别:
MUTAGENESIS AND TOXICITY OF PEROXYNITRITE-INDUCED DNA LESIONS IN HUMAN CELLS
过氧亚硝酸盐引起的人类细胞 DNA 损伤的诱变和毒性
- 批准号:
7725168 - 财政年份:2008
- 资助金额:
$ 38.91万 - 项目类别:
相似国自然基金
低价钴-氢催化烯烃/炔烃氢烷基化
- 批准号:22371273
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
镍催化非活化烯烃的多组分还原双烷基化反应
- 批准号:22301290
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ZnCeZrOx@ZSM-5双功能催化剂的构建及催化二氧化碳加氢与苯烷基化性能研究
- 批准号:22309130
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
光电协同多组分氟烷基化/环化同步反应及应用研究
- 批准号:22378360
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
吡啶间位碳氢键的不对称烷基化反应研究
- 批准号:22371141
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
DNAzymes for Site-Specific DNA and RNA Nucleobase Modification
用于位点特异性 DNA 和 RNA 核碱基修饰的 DNAzyme
- 批准号:
10630686 - 财政年份:2023
- 资助金额:
$ 38.91万 - 项目类别:
Studies on Epigenetically Active Latent Chromatin Maintenance
表观遗传活性潜在染色质维持的研究
- 批准号:
10570202 - 财政年份:2022
- 资助金额:
$ 38.91万 - 项目类别:
DIFFERENTIATION OF ISOMERIC AMINO ACID RESIDUES IN PEPTIDES USING ECD
使用 ECD 区分肽中的异构氨基酸残基
- 批准号:
7955921 - 财政年份:2009
- 资助金额:
$ 38.91万 - 项目类别: