Mechanical Causation of Corneal Stromal Matrix Synthesis and Fibrosis
角膜基质基质合成和纤维化的机械原因
基本信息
- 批准号:10659976
- 负责人:
- 金额:$ 55.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAccess to InformationAddressAnimalsBiopolymersCell Culture TechniquesCellsCicatrixCollagenCollagen FibrilCommunicationConnective TissueCorneaCorneal StromaCoupledCouplesCustomDepositionDevelopmentDiffusionEngineeringEnvironmentEtiologyEventExclusionExperimental DesignsExtracellular MatrixEyeFibroblastsFibronectinsFibrosisGeneticGlaucomaGoalsGrowthHomeostasisHumanImageIn VitroIntegrinsIntervertebral disc structureInvestigationKeratoconusKnowledgeLaser In Situ KeratomileusisLengthLigamentsMeasurementMeasuresMechanicsMedicineMesenchymalMethodsMicroscopyMinorModelingMolecularMorphogenesisMyofibroblastMyopiaNatural regenerationNaturePathologicPathological DilatationPatternPhasePositioning AttributeProductionRecording of previous eventsRetinal DetachmentRoleScleraShapesSpeedStressStructureTendon structureTestingTissue EngineeringTissuesTractionTunicVertebratesVisionWeight-Bearing stateWorkblebbistatincorneal scarfibrillogenesisimprovedlight transmissionlive cell microscopymechanical forcemechanical signalmembermolecular assembly/self assemblymonomerorganizational structurepressureprospectiveregenerativeresponsesingle moleculetemporal measurementtheoriestoolwound healing
项目摘要
Project Summary
The cornea and sclera are the principal load bearing members in the tough fibrous ocular tunic which we consider
to be an integrated mechano-biological structure. During development, the shape of the eye has been tuned to
conform to a specific mechanical environment through a long time-scale integration of its loading history with
its initial genetic patterning. Although mechanics are known to contribute to the development of many
connective tissues, the ocular globe is particularly sensitive to pressure (tensile wall stress) during the expansive
phase of growth. Even in the mature ocular tunic, mechanical instabilities often manifest as conditions which
disrupt vision (e.g. myopia, keratoconus, post-LASIK ectasia, tractional retinal detachments and glaucoma).
While the underlying causes of tissue structural instabilities are poorly understood, we suspect that they are
mechanobiological in nature and potentially reflect an imbalance in the tensional homeostasis that exists
between mesenchymal cells, their local ECM and the global mechanical environment. We know that during
development, disruption of the mechanical connection between fibroblastic cells and their ECM severely retards
ocular growth in a manner analogous to pressure loss, suggesting that mechanical communication is critical to
proper ocular morphogenesis. However, the effect of mechanical forces on the mechanisms which drive tissue
formation and growth are not well characterized. It is remarkable that we still do not fully understand how the
most important structural molecule in vertebrates, collagen, is efficiently assembled into highly-organized,
functional, load-bearing tissues which are massively expanded into macroscale structures during growth.
However, if we are able to uncover new mechanisms which control tissue formation and growth, we will have
access to information which can inform therapies for a variety of pathological conditions including fibrosis,
myopia, keratoconus and potentially, glaucoma. Additionally, if we understand how tissue is produced, then
there will be implications for engineering corneas de novo and for improving approaches to regenerative corneal
medicine. In the proposed work, we plan combine our human cell culture model of corneal stromal tissue
elaboration with live-cell mechanodynamics imaging to directly observe single collagen molecules during their
transition from solution to fibrils. We will thus directly test a new hypothesis which directly couples local and
globally applied forces directly to molecular assembly of collagen during fibrillogenesis and growth. The working
hypothesis for this proposal is that force causes corneal stromal ECM elaboration to regulate fibril assembly,
remodeling and growth. If the hypothesis is correct, there are myriad mechanotherapeutic opportunities and
more critically, our basic understanding of collagenous tissue formation and growth, will be fundamentally
altered.
项目概要
角膜和巩膜是我们认为坚韧的纤维眼外衣中的主要承重构件
成为一个综合的机械生物结构。在发育过程中,眼睛的形状已调整为
通过长期整合其加载历史来适应特定的机械环境
它最初的遗传模式。尽管众所周知,力学对许多领域的发展做出了贡献
结缔组织,眼球在扩张期间对压力(张力壁应力)特别敏感
成长阶段。即使在成熟的眼外衣中,机械不稳定性也常常表现为以下情况:
视力障碍(例如近视、圆锥角膜、LASIK术后扩张、牵拉性视网膜脱离和青光眼)。
虽然组织结构不稳定的根本原因尚不清楚,但我们怀疑它们是
本质上是机械生物学的,可能反映了存在的张力稳态的不平衡
间充质细胞、其局部 ECM 和整体机械环境之间的关系。我们知道,期间
成纤维细胞及其 ECM 之间机械连接的破坏严重阻碍了发育
眼睛以类似于压力损失的方式生长,表明机械通讯对于
适当的眼部形态发生。然而,机械力对驱动组织的机制的影响
形成和生长尚不明确。值得注意的是,我们仍然没有完全理解
脊椎动物中最重要的结构分子胶原蛋白被有效地组装成高度组织化的、
功能性、承重组织,在生长过程中大量扩展为宏观结构。
然而,如果我们能够发现控制组织形成和生长的新机制,我们将有
获取可以为各种病理状况(包括纤维化)的治疗提供信息的信息,
近视、圆锥角膜和潜在的青光眼。此外,如果我们了解组织是如何产生的,那么
这将对角膜从头工程和改进角膜再生方法产生影响
药品。在拟议的工作中,我们计划结合我们的角膜基质组织的人类细胞培养模型
详细阐述活细胞机械动力学成像,直接观察单个胶原分子在其作用过程中的情况
从溶液到原纤维的转变。因此,我们将直接测试一个新的假设,该假设直接耦合本地和
在原纤维形成和生长过程中,全局直接施加力到胶原蛋白的分子组装。工作中
该提议的假设是,力导致角膜基质 ECM 精细化以调节原纤维组装,
重塑和成长。如果假设正确,就会有无数的机械治疗机会和
更重要的是,我们对胶原组织形成和生长的基本了解将从根本上
改变了。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey W Ruberti其他文献
Jeffrey W Ruberti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey W Ruberti', 18)}}的其他基金
Cell-Free Assembly of Organized Collagen Arrays
有组织的胶原阵列的无细胞组装
- 批准号:
7359669 - 财政年份:2007
- 资助金额:
$ 55.23万 - 项目类别:
Cell-Free Assembly of Organized Collagen Arrays
有组织的胶原阵列的无细胞组装
- 批准号:
7241873 - 财政年份:2007
- 资助金额:
$ 55.23万 - 项目类别:
Investigation of Collagen as a Smart Engineering Material
胶原蛋白作为智能工程材料的研究
- 批准号:
7077109 - 财政年份:2006
- 资助金额:
$ 55.23万 - 项目类别:
Investigation of Collagen as a Smart Engineering Material
胶原蛋白作为智能工程材料的研究
- 批准号:
7230087 - 财政年份:2006
- 资助金额:
$ 55.23万 - 项目类别:
相似海外基金
Development of high-quality reference genomes for Anopheles squamosus and An. cydippis
开发鳞状按蚊和按蚊的高质量参考基因组。
- 批准号:
10725180 - 财政年份:2023
- 资助金额:
$ 55.23万 - 项目类别:
Improving Function and Reducing Opioid Use for Patients with Chronic Low Back Pain in Rural Communities through Improved Access to Physical Therapy using Telerehabilitation
通过远程康复改善物理治疗的可及性,改善农村社区慢性腰痛患者的功能并减少阿片类药物的使用
- 批准号:
10745146 - 财政年份:2023
- 资助金额:
$ 55.23万 - 项目类别:
Smartphone app to examine effects of cannabis use on driving behavior
智能手机应用程序可检查大麻使用对驾驶行为的影响
- 批准号:
10458349 - 财政年份:2022
- 资助金额:
$ 55.23万 - 项目类别:
PREMIERE: A PREdictive Model Index and Exchange REpository
PREMIERE:预测模型索引和交换存储库
- 批准号:
10668938 - 财政年份:2019
- 资助金额:
$ 55.23万 - 项目类别: