Network Science Methodology for Assessing PTSD Risk
评估 PTSD 风险的网络科学方法
基本信息
- 批准号:7893201
- 负责人:
- 金额:$ 1.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-15 至 2010-09-30
- 项目状态:已结题
- 来源:
- 关键词:Applications GrantsAreaAutistic DisorderBehavioralBioinformaticsBiomedical ResearchBurn injuryCellsChildChild DevelopmentCoinCommunicable DiseasesComplexComputational BiologyData SetDevelopmentDiseaseDissociationEmotionalEvaluationEventExploratory/Developmental GrantExposure toFailureFamilyFutureGene ProteinsGenomicsHippocampus (Brain)HourHumanInjuryInternetInterventionKnowledgeLeadLinkLiteratureMalignant NeoplasmsMedicineMental HealthMethodologyModelingMolecularNatureOutcomePost-Traumatic Stress DisordersPreventionProblem behaviorProcessPropertyPsychopathologyRefractoryResearchResearch MethodologyResistanceRiskRisk FactorsScienceSystemTimeTraumaWorkagedbasefunctional disabilityhigh risk infantinfancymedical schoolsreconstructionself organizationsocialyoung adult
项目摘要
DESCRIPTION (provided by applicant): This application seeks to bring a relatively new research methodology called Network Science (NS) to the understanding of risk factors for the complex and multi-determined psychopathology of PTSD. Network Science has been applied, in many areas of scientific pursuit, to understand the variables that most contribute to the emergence and persistence of complex phenomena. The methodology of NS enables the determination of whether a given set of variables develops the properties of what has been termed a 'Complex Adaptive System (CAS)'. The essential properties of a CAS include self-organization, self- sustenance, and robustness. A CAS can emerge from natural (e.g. a cell, a disease) or human-made (e.g. the internet, an economy) phenomena. Once a CAS emerges, this complex system of variables becomes highly resistant to external challenge. This perspective has influenced biomedical research in a number of important areas (e.g. cancer, infectious disease, autism) and the term 'Network Medicine' has been coined to describe the application of NS to biomedical research. This application brings together a team with diverse areas of expertise ideally suited to the application of NS to risk factor research for PTSD. Expertise in the following areas is featured in this proposed research: 1) bio-behavioral risk factors for PTSD, 2) genomics of PTSD, 3) computational biology and bioinformatics, 4) child development, and 5) longitudinal research methodology related to PTSD. This team will work together to determine if a complex set of variables related to PTSD may constitute a Complex Adaptive System; and whether the robust properties of such a system lead to the treatment refractory nature of PTSD. Network Science methodology will be applied to 1) the analysis of two compelling longitudinal datasets that contain information ideally suited to understanding the systemic properties of PTSD; and 2) the creation of a Molecular Network Reconstruction of PTSD based on queries of available information on the relationship between PTSD (and related disorders); and the genes and proteins associated with these disorders. If NS reveals a Complex Adaptive System related to traumatic exposure and PTSD, intervention approaches to treat PTSD can be substantially informed by understanding how such a system persists or fails. This application seeks to bring a relatively new research methodology called Network Science (NS) to the understanding of risk factors for the complex and multi-determined psychopathology of PTSD. Network Science has been applied, in many areas of scientific pursuit, to understand the variables that most contribute to the emergence and persistence of complex phenomena. The methodology of NS enables the determination of whether a given set of variables develops the properties of what has been termed a 'Complex Adaptive System (CAS)'. If NS reveals a Complex Adaptive System related to traumatic exposure and PTSD, intervention approaches to treat PTSD can be substantially informed by understanding how such a system persists or fails.
描述(由申请人提供):本申请旨在将一种称为网络科学(NS)的相对较新的研究方法带入对PTSD复杂和多确定的心理病理学的风险因素的理解。网络科学已在科学追求的许多领域应用,以了解最大程度地促进复杂现象的出现和持久性的变量。 NS的方法可以确定一组变量是否形成所谓的“复杂自适应系统(CAS)”的属性。 CAS的基本特性包括自组织,自我维持和鲁棒性。 CAS可以从天然(例如细胞,疾病)或人为(例如互联网,经济)现象中出现。一旦出现CAS,这种复杂的变量系统就会对外部挑战具有高度抵抗力。这种观点影响了许多重要领域(例如癌症,传染病,自闭症)和“网络医学”一词的生物医学研究,以描述NS在生物医学研究中的应用。该应用程序汇集了一个具有不同专业知识领域的团队,非常适合将NS应用于PTSD的风险因素研究。这项拟议的研究中介绍了以下领域的专业知识:1)PTSD的生物行为危险因素,2)PTSD的基因组学,3)计算生物学和生物信息学,4)儿童发育和5)5)与PTSD相关的纵向研究方法。该团队将共同努力,以确定与PTSD相关的一组复杂的变量是否可能构成复杂的自适应系统;以及这种系统的鲁棒性能是否导致PTSD的治疗性质。网络科学方法将应用于1)对两个引人注目的纵向数据集的分析,这些数据集包含非常适合理解PTSD的系统性特性的信息; 2)基于有关PTSD(和相关疾病)之间关系的可用信息查询,创建了PTSD的分子网络重建;以及与这些疾病相关的基因和蛋白质。如果NS揭示了与创伤性暴露和PTSD相关的复杂自适应系统,则可以通过了解这种系统如何持续或失败来实质性地了解治疗PTSD的干预方法。该应用程序旨在将一种称为网络科学(NS)的相对较新的研究方法带入对PTSD复杂而多确定的心理病理学的风险因素的理解。网络科学已在科学追求的许多领域应用,以了解最大程度地促进复杂现象的出现和持久性的变量。 NS的方法可以确定一组变量是否形成所谓的“复杂自适应系统(CAS)”的属性。如果NS揭示了与创伤性暴露和PTSD相关的复杂自适应系统,则可以通过了解这种系统如何持续或失败来实质性地了解治疗PTSD的干预方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GLENN N SAXE其他文献
GLENN N SAXE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GLENN N SAXE', 18)}}的其他基金
The Center on Causal Data Science for Child Maltreatment Prevention (the CHAMP Center)
儿童虐待预防因果数据科学中心(CHAMP 中心)
- 批准号:
10672629 - 财政年份:2023
- 资助金额:
$ 1.27万 - 项目类别:
Computational Models for the Prediction and Prevention of Child Traumatic Stress - Resubmission - 1
预测和预防儿童创伤应激的计算模型 - 重新提交 - 1
- 批准号:
10206005 - 财政年份:2019
- 资助金额:
$ 1.27万 - 项目类别:
Computational Models for the Prediction and Prevention of Child Traumatic Stress - Resubmission - 1
预测和预防儿童创伤应激的计算模型 - 重新提交 - 1
- 批准号:
10021724 - 财政年份:2019
- 资助金额:
$ 1.27万 - 项目类别:
Computational Models for the Prediction and Prevention of Child Traumatic Stress - Resubmission - 1
预测和预防儿童创伤应激的计算模型 - 重新提交 - 1
- 批准号:
10455072 - 财政年份:2019
- 资助金额:
$ 1.27万 - 项目类别:
Network Science Methodology for Assessing PTSD Risk
评估 PTSD 风险的网络科学方法
- 批准号:
8209319 - 财政年份:2009
- 资助金额:
$ 1.27万 - 项目类别:
Network Science Methodology for Assessing PTSD Risk
评估 PTSD 风险的网络科学方法
- 批准号:
7680858 - 财政年份:2009
- 资助金额:
$ 1.27万 - 项目类别:
PTSD in Children with Injuries: A Longitudinal Study
受伤儿童的创伤后应激障碍:一项纵向研究
- 批准号:
7171862 - 财政年份:2003
- 资助金额:
$ 1.27万 - 项目类别:
相似国自然基金
跨区域调水工程与区域经济增长:效应测度、机制探究与政策建议
- 批准号:72373114
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
农产品区域公用品牌地方政府干预机制与政策优化研究
- 批准号:72373068
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
新型城镇化与区域协调发展的机制与治理体系研究
- 批准号:72334006
- 批准年份:2023
- 资助金额:167 万元
- 项目类别:重点项目
我国西南地区节点城市在次区域跨国城市网络中的地位、功能和能级提升研究
- 批准号:72364037
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
多时序CT联合多区域数字病理早期预测胃癌新辅助化疗抵抗的研究
- 批准号:82360345
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
ARGUS-MDS: automated, quantitative and scalable system for social processes in behavioral health
ARGUS-MDS:行为健康社会过程的自动化、定量和可扩展系统
- 批准号:
10019734 - 财政年份:2019
- 资助金额:
$ 1.27万 - 项目类别:
ARGUS-MDS: automated, quantitative and scalable system for social processes in behavioral health
ARGUS-MDS:行为健康社会过程的自动化、定量和可扩展系统
- 批准号:
10369582 - 财政年份:2019
- 资助金额:
$ 1.27万 - 项目类别:
ARGUS-MDS: automated, quantitative and scalable system for social processes in behavioral health
ARGUS-MDS:行为健康社会过程的自动化、定量和可扩展系统
- 批准号:
9906771 - 财政年份:2019
- 资助金额:
$ 1.27万 - 项目类别:
Intrahippocampal dynamics underlying cognitive rigidity
认知僵化背后的海马内动态
- 批准号:
9462227 - 财政年份:2016
- 资助金额:
$ 1.27万 - 项目类别:
Transporting established insights from classical experimental design to address causal questions in environmental epidemiology including the understanding of biological mediating mechanisms
运用经典实验设计的既定见解来解决环境流行病学中的因果问题,包括对生物介导机制的理解
- 批准号:
9276157 - 财政年份:2016
- 资助金额:
$ 1.27万 - 项目类别: