Computational Models for the Prediction and Prevention of Child Traumatic Stress - Resubmission - 1
预测和预防儿童创伤应激的计算模型 - 重新提交 - 1
基本信息
- 批准号:10021724
- 负责人:
- 金额:$ 61.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-20 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:18 year oldAddressAdolescentAreaBig DataBirthChildChild Traumatic StressChild WelfareClinicalCognitiveComputer ModelsComputing MethodologiesDataData CollectionData SetDecision TreesDependenceDevelopmentEmotionalEthicsEtiologyGenotypeHealthHumanInterventionKnowledgeLearningLeftLiteratureLongitudinal StudiesMachine LearningMeasuresMental DepressionMethodologyMethodsModelingObservational StudyOutcomeParentsPerformancePopulationPopulation HeterogeneityPost-Traumatic Stress DisordersPredictive FactorPreventionPreventive InterventionPrimary PreventionRandomizedReportingResearchRetrospective StudiesRiskRisk FactorsSecondary PreventionSubstance abuse problemTimeTraumaYouthbasecausal modelcohortcomputerizeddesigndiverse dataexperienceexperimental studyfunctional outcomesimprovedinnovationnovelpediatric traumapersonalized predictionspredictive modelingpreservationpreventprospectivesimulationsocialtooltrauma exposuretraumatic eventtraumatic stresstraumatized children
项目摘要
Project Summary/Abstract
At least 40% of children will experience a traumatic event. Of those who experience a trauma, 15-40% will
develop Posttraumatic Stress Disorder (PTSD), and other adverse psychiatric, health, and functional outcomes
(herein called Child Traumatic Stress - CTS). Despite decades of research on risk factors for CTS, the field has
not arrived at specific risk factor models that can accurately predict the likelihood of CTS outcomes or identify
factors that – if changed – would change their likelihood. Knowledge about changes in factors that result in
changes in outcomes is, by definition, causal. The vast majority of findings in the literature on risk for CTS
cannot provide such causal knowledge because such findings were based on the application of correlational
methods to observational data. Experimental research cannot – for all practical purposes - be conducted for
human research on risk for CTS. Thus, the field is left with correlational observational research as the near
exclusive generator of empirical knowledge on risk for CTS, and such knowledge is unsuitable to guide the
actions (i.e. interventions) that must be taken to change children's likelihood of acquiring CTS outcomes. We
propose to address this considerable barrier to progress by applying methods that can enable confident causal
inference with large observational data sets containing a broad diversity of risk variables for CTS. Machine
Learning (ML) predictive and causal modeling methods will be applied to discover causal relationships among
measured variables from observational data: and from such determined causal relationships, to estimate the
effect on a CTS outcome when a causal variable is manipulated (i.e. intervention simulation). We will build
models for outcomes associated with childhood trauma in the literature and that entail significant burden to
children's well-being, functioning, and development: PTSD, Depression, Substance Abuse, Health, and
Educational Performance.
项目摘要/摘要
至少有40%的儿童会遇到创伤事件。在经历创伤的人中,15-40%的人会
发展创伤后应激障碍(PTSD)以及其他不良精神病,健康和功能结果
(此处称为儿童创伤压力-CTS)。尽管对CTS的危险因素进行了数十年的研究,但该领域有
未达到特定的风险因素模型,可以准确预测CTS结果的可能性或识别
如果发生变化,则会改变其可能性。了解导致因素的变化
根据定义,结果的变化是因果关系。关于CTS风险的文献中的绝大多数发现
无法提供这种因果知识,因为这些发现是基于相关的应用
观察者数据的方法。实验研究不能用于所有实际目的
人类有关CTS风险的研究。那是该领域的相关观察研究,作为近乎
关于CTS风险的经验知识的独家生成者,此类知识不适合指导
必须采取的行动(即干预措施)才能改变儿童获得CTS结果的可能性。我们
通过应用可以实现自信催化的方法来解决这一巨大进步障碍的建议
与大型观察数据集的推断,其中包含CTS风险变量的广泛多样性。机器
学习(ML)预测和因果建模方法将应用于发现之间的因果关系
从观察数据中测量的变量以及从这种确定的因果关系来估计
当因果变量被操纵时(即干预模拟)时,对CTS结果的影响。我们将建造
文献中与儿童创伤相关的结局模型,这需要大量伯恩
儿童的福祉,功能和发展:PTSD,抑郁,药物滥用,健康和
教育表现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GLENN N SAXE其他文献
GLENN N SAXE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GLENN N SAXE', 18)}}的其他基金
The Center on Causal Data Science for Child Maltreatment Prevention (the CHAMP Center)
儿童虐待预防因果数据科学中心(CHAMP 中心)
- 批准号:
10672629 - 财政年份:2023
- 资助金额:
$ 61.35万 - 项目类别:
Computational Models for the Prediction and Prevention of Child Traumatic Stress - Resubmission - 1
预测和预防儿童创伤应激的计算模型 - 重新提交 - 1
- 批准号:
10206005 - 财政年份:2019
- 资助金额:
$ 61.35万 - 项目类别:
Computational Models for the Prediction and Prevention of Child Traumatic Stress - Resubmission - 1
预测和预防儿童创伤应激的计算模型 - 重新提交 - 1
- 批准号:
10455072 - 财政年份:2019
- 资助金额:
$ 61.35万 - 项目类别:
Network Science Methodology for Assessing PTSD Risk
评估 PTSD 风险的网络科学方法
- 批准号:
7893201 - 财政年份:2009
- 资助金额:
$ 61.35万 - 项目类别:
Network Science Methodology for Assessing PTSD Risk
评估 PTSD 风险的网络科学方法
- 批准号:
8209319 - 财政年份:2009
- 资助金额:
$ 61.35万 - 项目类别:
Network Science Methodology for Assessing PTSD Risk
评估 PTSD 风险的网络科学方法
- 批准号:
7680858 - 财政年份:2009
- 资助金额:
$ 61.35万 - 项目类别:
PTSD in Children with Injuries: A Longitudinal Study
受伤儿童的创伤后应激障碍:一项纵向研究
- 批准号:
7171862 - 财政年份:2003
- 资助金额:
$ 61.35万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Household Air Pollution, Adiposity, and Cardiorenal Disease Risk in Children
家庭空气污染、肥胖和儿童心肾疾病风险
- 批准号:
10739062 - 财政年份:2023
- 资助金额:
$ 61.35万 - 项目类别:
Leveraging complementary big data methods and patient intervention designs to optimize neural markers of adolescent cannabis use
利用互补的大数据方法和患者干预设计来优化青少年大麻使用的神经标记
- 批准号:
10739527 - 财政年份:2023
- 资助金额:
$ 61.35万 - 项目类别:
Addressing Sleep in Adolescents Post-concussion (“ASAP Study”): A Phase 2 Clinical Trial
解决青少年脑震荡后的睡眠问题(“ASAP 研究”):2 期临床试验
- 批准号:
10571117 - 财政年份:2023
- 资助金额:
$ 61.35万 - 项目类别:
Investigation of Digital Media Use, Anxiety, and Biobehavioral Emotion Regulation in Adolescents
青少年数字媒体使用、焦虑和生物行为情绪调节的调查
- 批准号:
10814547 - 财政年份:2023
- 资助金额:
$ 61.35万 - 项目类别:
A Contemporary Look at Driver Training and Its Role In Reducing Crash Risk in Novice Adolescent Drivers.
对驾驶员培训及其在降低青少年新手驾驶员碰撞风险中的作用的当代看法。
- 批准号:
10582905 - 财政年份:2023
- 资助金额:
$ 61.35万 - 项目类别: