ARGUS-MDS: automated, quantitative and scalable system for social processes in behavioral health
ARGUS-MDS:行为健康社会过程的自动化、定量和可扩展系统
基本信息
- 批准号:9906771
- 负责人:
- 金额:$ 13.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-06 至 2020-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsApplications GrantsAreaArtificial IntelligenceAutomationBehaviorBehavioral SciencesBiometryCharacteristicsChildChildhoodClinicClinicalClinical SciencesClinical TrialsClinical assessmentsCognitiveCollaborationsComputer Vision SystemsComputer softwareComputersDSM-VDataDevelopmentDiagnosisDiagnosticDiseaseEvaluationEvidence based practiceFaceFacial ExpressionFactor AnalysisFeedbackFragile X SyndromeGesturesGoalsGoldGrantGuidelinesHealthHealthcareHome environmentHumanImpairmentIndividualIntervention TrialLanguageLengthMachine LearningMeasurementMeasuresMedical DeviceMedical Device DesignsMethodsModelingMonitorMovementNatureNeurodevelopmental DisorderNonverbal CommunicationOutcomeOutcome MeasureOutputPatientsPhasePopulationPreparationProblem behaviorProcessPropertyPsychometricsPublic HealthRegulationReportingResearchSamplingSchool-Age PopulationScientistSmall Business Technology Transfer ResearchSocial BehaviorSocial ProcessesSpeechStandardizationSystemTechnologyTestingTherapeuticTrainingValidationValidity and Reliabilityanalogassociated symptomautism spectrum disorderautistic childrenbehavior observationbehavioral healthclinical practicecommercializationcommunication behaviordigitaldisabilitydissemination trialearly childhoodexperimental studyfunctional disabilityfunctional outcomesgazeimprovedmachine learning algorithmmedical specialtiesmotor controlmulti-component interventionneuropsychiatrynew technologynovelpersonalized interventionprogramsrepetitive behaviorresearch clinical testingscreeningshowing emotionsocialsocial communicationsocial deficitssocial reciprocity
项目摘要
Argus Cognitive STTR Grant Application
Abstract
Standardized behavioral observation methods are integral to developmental, educational, and behavioral
science research. However, existing observational strategies are too laborious to use in large-scale, intervention
and dissemination trials needed in autism spectrum disorder (ASD). In addition, current observational
strategies do not yield sufficiently quantitative, comparable and granular assessment that could drive the
comparison of therapies in clinical trials or the optimization and personalization of intervention. We are
developing a minimally intrusive medical device technology (“ARGUS-MDS”) to simultaneously
monitor multiple key social and problem behaviors in individuals with ASD and related
neurodevelopmental disorders (NDDs). Our team represents an essential collaboration between
computer and clinical scientists with expertise in artificial intelligence (AI), NDDs, diagnostics, multi-modal
interventions, and psychometrics. We seek support in the form of a Fast Track STTR grant to validate the
psychometric properties of ARGUS-MDS and its ability to provide data on change in target behaviors in early
childhood and school-aged children. This would then support the development of a scalable, digital treatment
progress indicator for behaviors reflecting social, repetitive behavior, and associated symptom profiles in ASD.
In Phase I, video and audio data will be collected during gold-standard diagnostic evaluations individuals with
ASD (n=15). Aim 1.1 will establish quality and clinical validity of ARGUS-MDS algorithms for key social
communication behaviors, while Aim 1.2 will evaluate test-retest reliability of biometric output. Phase I will
show that ARGUS-MDS meets quality metrics for biometric output, validates the clinician-
technician feedback system, and establishes intraclass correlation coefficients for automated
social communication (AutoSC) output. In Phase II our focus shifts to establishing psychometric
properties of derived scores for AutoSC analysis, evaluating convergence with established clinical and
functional measures, and preparing for regulatory filing in Phase III. Aim 2.1. will develop scores from
biometric data through exploratory and confirmatory factor analyses of social communication behaviors. Aim
2.2 evaluates correspondence of AutoSC scores to scores on standardized clinical assessments. Aim 2.3
develops a comprehensive Validation Strategy and executes Analytical Validation, per medical device design
control regulation and FDA guidance. Phase II will develop scores from AutoSC output, evaluate
measurement characteristics of AutoSC scores, reliability & validity of Autos SC scores, and
executes all Analytical Validations per the strategy document and FDA guidance. Phase I and II
milestones will set us up for commercialization in Phase III, including filing for regulatory approval and
product launch. Successful completion of this project will provide a novel, scalable medical device technology
to support objective, automated clinical evaluations of social impairments in ASD and other NDDs.
Argus认知STTR赠款应用
抽象的
标准化的行为观察方法是发展,教育和行为不可或缺的
科学研究。但是,现有的观察策略太实验室了,无法用于大规模干预
和自闭症谱系障碍(ASD)所需的传播试验。另外,当前的观察
策略不会产生足够的定量,可比和颗粒状评估,可以推动
比较临床试验中的疗法或干预的优化和个性化。我们是
开发最小的侵入性医疗设备技术(“ Argus-MD”)以简单地
监视ASD及相关个人的多个关键社会和问题行为
神经发育障碍(NDDS)。我们的团队代表了之间的重要合作
具有人工智能专业知识(AI),NDD,诊断,多模式的计算机和临床科学家
干预措施和精神计量学。我们以快速轨道授予的形式寻求支持,以验证
Argus-MD的心理测量特性及其在早期提供目标行为变化数据的能力
童年和学龄儿童。然后,这将支持开发可扩展的数字处理
反映了ASD中社会,重复行为和相关症状特征的行为的进度指标。
在第一阶段,将在金标准诊断评估中收集视频和音频数据
ASD(n = 15)。 AIM 1.1将建立Argus-MDS算法的质量和临床有效性
交流行为,而AIM 1.2将评估生物识别输出的重测可靠性。第一阶段会
证明Argus-MD符合生物识别输出的质量指标,证实了临床 -
技术员反馈系统,并建立自动化的影响相关系数
社交通信(AUTOSC)输出。在第二阶段,我们的重点转向建立心理测量学
用于自动分析的派生得分的特性,评估与已建立的临床和
功能措施,并准备在第三阶段进行调节申请。目标2.1。将从
通过探索性和确认因素分析社会交流行为的生物识别数据。目的
2.2评估AUTOSC评分的对应关系对标准化临床评估的得分。目标2.3
根据医疗设备设计,制定了全面验证策略并执行分析验证
控制法规和FDA指导。第二阶段将从Autosc输出中发展得分,评估
AUTOSC分数的测量特征,汽车SC分数的可靠性和有效性以及
根据策略文档和FDA指导执行所有分析验证。第一阶段和第二阶段
里程碑将使我们在第三阶段中进行商业化,包括申请法规批准和
产品发布。该项目的成功完成将提供一种新颖的可扩展医疗设备技术
为了支持目标,对ASD和其他NDD的社会障碍的自动临床评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Attila Meretei其他文献
Attila Meretei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Attila Meretei', 18)}}的其他基金
ARGUS-MDS: automated, quantitative and scalable system for social processes in behavioral health
ARGUS-MDS:行为健康社会过程的自动化、定量和可扩展系统
- 批准号:
10019734 - 财政年份:2019
- 资助金额:
$ 13.97万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
- 批准号:
10602275 - 财政年份:2023
- 资助金额:
$ 13.97万 - 项目类别:
Mechanisms of Rotator Cuff Injury During Manual Wheelchair Propulsion
手动轮椅推进过程中肩袖损伤的机制
- 批准号:
10572578 - 财政年份:2023
- 资助金额:
$ 13.97万 - 项目类别:
Core C-Research Computing, Bioinformatics, and Biostatistics
核心 C 研究计算、生物信息学和生物统计学
- 批准号:
10553867 - 财政年份:2023
- 资助金额:
$ 13.97万 - 项目类别:
Noninvasive Repositioning of Kidney Stone Fragments with Acoustic Forceps
用声学钳无创重新定位肾结石碎片
- 批准号:
10589666 - 财政年份:2023
- 资助金额:
$ 13.97万 - 项目类别:
Design and Pilot Test of A Prediabetes Digital Patient Activation Tool
糖尿病前期数字患者激活工具的设计和试点测试
- 批准号:
10648646 - 财政年份:2023
- 资助金额:
$ 13.97万 - 项目类别: