Novel 3D Catheter Tracking System for Intracardiac Navigation
用于心内导航的新型 3D 导管跟踪系统
基本信息
- 批准号:7608733
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-02-02 至 2009-08-01
- 项目状态:已结题
- 来源:
- 关键词:AblationAddressAdverse effectsAgeAlgorithmsAmericanAmplifiersAnatomyAnimal TestingAnimalsArchitectureAreaArrhythmiaAtrial FibrillationBloodCalibrationCardiacCardiac Surgery proceduresCardiac ablationCathetersChestChoristomaClinicalComplexComputer SimulationComputer Systems DevelopmentDataDevelopmentDiagnosisEffectivenessElectrodesElectrophysiology (science)ElementsEnsureEpidemicFaceFamily suidaeFinancial compensationFutureGoalsGrowthHeartHeart DiseasesHeelHumanImageryIncidenceInterventionLifeLocationLungMapsMarketingMeasurementMeasuresMediatingMediationModalityModelingMorphologic artifactsMotionMovementOperative Surgical ProceduresOutcomePatient CarePatientsPerforationPerformancePharmacotherapyPhasePhysiologicalPlaguePrevalenceProceduresRadiofrequency Interstitial AblationReadinessRecurrenceResearch Project GrantsRespirationRunningSafetySignal TransductionSiteStructureSurfaceSystemTechnologyTestingTherapeutic procedureTimeTissuesUncertaintyValidationWorkanalogbasecommercial applicationdesigndigitaleffective therapyelectrical propertyheart electrical activityheart rhythmimprovedin vivolifetime riskminimally invasivemortalitymultidisciplinarynext generationnovelnovel strategiesphantom modelprototypepublic health relevanceresponsesuccesstoolvalidation studies
项目摘要
DESCRIPTION (provided by applicant): The proposed research project will entail the development and initial testing of a novel 3D catheter tracking system for intra-cardiac navigation. The long-term objective of the project is to develop a self-contained tracking mechanism that could be used for any clinical purpose requiring accurate 3D manipulation of catheters inside the heart. The first commercial application currently envisioned would be a system designed to generate 3D maps of the heart's electrical activity and accurately guide the treatment (e.g., radiofrequency ablation) of cardiac arrhythmias. The incidence and prevalence of cardiac arrhythmias has seen explosive growth in the last few decades, mirroring an alarming increase in all forms of heart disease known to trigger and perpetuate rhythm abnormalities. Atrial fibrillation alone has reached epidemic proportions, estimated to currently afflict ~2.3 million Americans and ~5.6 million by 2050. Moreover, the lifetime risk of atrial fibrillation at age 40 is 22-24% and the condition is associated with a two-fold increase in mortality. Traditional treatment modalities, namely drug therapy and open heart surgery, have been found to be inadequate for a growing number of patients, either because of poor efficacy, side effects, or the mere invasiveness of surgical procedures. The advent of specialized percutaneous catheters and the development of other enabling technologies have collectively led to an improvement in the safety and efficacy of minimally-invasive curative procedures. Having grown more than 10-fold in the last decade, catheter-based procedures have become the preferred mode of intervention in symptomatic patients. Cardiac rhythm abnormalities present a major treatment challenge, as they are often selectively triggered and perpetuated by specific areas of the heart that tend to be highly variable between patients. Since most procedures utilize an endocardial approach, effective therapy depends on reliable localization of the aberrant tissue on the complex 3D endocardial surface and the accurate delivery of ablative energy to culprit sites. As the number of catheter-based procedures performed by cardiac electrophysiologists continues to grow, the need for an accurate and reliable catheter tracking system becomes even more apparent. In response to this emerging need, several systems have been developed to facilitate catheter-mediated negotiation of the endocardial surface. Unfortunately, these systems are all plagued by significant limitations, including tracking distortions and inadequate correction for respiration and other motion artifacts. The potential consequences of inaccurate catheter tracking include ablation of electrically normal cardiac tissue, perforation, repeat procedures for recurrence, and increased procedure and x-ray exposure times. Therefore, there is no doubt that more accurate tracking remains a significant unmet need in improving the outcome of percutaneous procedures. The proposed Rhythmia system constitutes next-generation technology that is uniquely architected to provide superior compensation for motion artifacts. Combined with its open platform architecture and accurate real- time correction of field inhomogeneity, the system would address all the shortcomings of existing systems and provide excellent tracking accuracy. By improving the safety profile and long-term success of catheter-based procedures, the Rhythmia system could have a profound impact on the quality of patient care and become the primary 3D tracking tool for ablation procedures as well as additional future cardiac applications. On the heels of previously performed virtual simulations, Phase I of the proposed project will include the development of a working prototype comprising of a tracking catheter, relevant hardware (amplifiers and filters), and a workstation running a visualization module and proprietary algorithms. Once operational, the system would be tested and improved using bench-top phantom models mimicking the electrical properties of blood and structures surrounding the heart. Specifically, Phase I will have the following aims: (1) Develop a prototype system that would be able to track the 3D location of multiple electrodes within an ex-vivo test chamber. (2) Quantify tracking accuracy ex vivo when electrode-bearing catheters are immersed and surrounded by a medium of homogeneous conductivity. (3) Quantify tracking accuracy ex vivo when catheters are immersed in an inhomogeneous medium, reference electrodes are employed, and motion is introduced. Feasibility will have been demonstrated when at the end of Specific Aim #3, the system can demonstrate sub- 2mm error in measuring the distance between 2 tracked electrodes (known to be 20mm apart) located within 50mm of the tracking catheter. Upon successful completion of bench-top validation, Phase II would be commenced comprising of large animal studies. PUBLIC HEALTH RELEVANCE: Cardiac rhythm abnormalities afflict a growing number of patients, with estimates ranging from 6 to 10 million people in the US alone. Minimally invasive procedures, such as catheter ablation, are quickly emerging as the preferred approach to eliminate cardiac arrhythmias and restore normal heart beat. The proposed project looks to develop next-generation technology for more accurately localizing catheters in 3D space as they are roving within the heart chambers in order to improve both the safety and effectiveness of therapeutic procedures.
描述(由申请人提供):拟议的研究项目将需要开发和初始测试,以用于心脏内导航的新型3D导管跟踪系统。该项目的长期目标是开发一种独立的跟踪机制,该机制可用于任何临床目的,需要精确3D对心脏内部导管的操纵。当前所设想的第一个商业应用程序将是一种旨在生成心脏电活动的3D地图的系统,并准确地指导心律不齐的治疗(例如,辐射频率消融)。在过去的几十年中,心律不齐的发病率和患病率已经爆炸性增长,反映出已知的所有形式的心脏病都令人震惊地增加,这些心脏病已触发和永久性的节奏异常。仅心房颤动就达到了流行比例,到2050年,目前估计会遭受约230万美国人的折磨,约560万。传统的治疗方式,即药物治疗和心脏手术,由于越来越多的患者的疗效,副作用或仅仅是外科手术程序的侵入性而对越来越多的患者而言不足。专门的经皮导管的出现以及其他促成技术的开发综合导致了最小侵入性治疗程序的安全性和功效的提高。在过去十年中,基于导管的程序已成为有症状患者的首选干预方式。心律异常提出了一个重大的治疗挑战,因为它们通常是由心脏的特定区域选择性触发和永存的,而心脏的特定区域往往会在患者之间变化很大。由于大多数程序都采用心内膜方法,因此有效的治疗取决于在复合物3D心内膜表面上对异常组织的可靠定位,以及将消融能量准确地递送到罪魁祸首。随着心脏电生理学家进行的基于导管的基于导管的程序的数量继续增长,需要准确可靠的导管跟踪系统的需求变得更加明显。为了应对这种新兴需求,已经开发了几种系统,以促进导管介导的心内膜表面的谈判。不幸的是,这些系统都受到重大局限性的困扰,包括跟踪扭曲和呼吸和其他运动伪影的校正不足。不准确的导管跟踪的潜在后果包括消融电气正常的心脏组织,穿孔,重复复发程序以及增加的程序和X射线暴露时间。因此,毫无疑问,更准确的跟踪仍然是改善经皮程序结果的重要需求。拟议的节奏系统构成了下一代技术,其独特的构建是为运动伪像提供卓越的补偿。结合其开放的平台体系结构和对现场不均匀性的准确实时校正,该系统将解决现有系统的所有缺点,并提供出色的跟踪准确性。通过改善基于导管的程序的安全性和长期成功,节奏系统可能会对患者护理的质量产生深远的影响,并成为消融程序的主要3D跟踪工具以及其他未来的心脏应用。在先前执行的虚拟仿真之后,提议的项目的第一阶段将包括开发由跟踪导管,相关硬件(放大器和过滤器)组成的工作原型,以及运行可视化模块和专有算法的工作站。一旦运行,将使用模仿心脏周围血液和结构的电气特性的基准幻影模型对系统进行测试和改进。具体而言,第一阶段将具有以下目的:(1)开发一个原型系统,该系统将能够跟踪前体内测试室内多个电极的3D位置。 (2)当电极导管被浸入并被均匀电导率介质包围时,定量跟踪准确性时。 (3)当导管浸入不均匀培养基中时,使用参考电极并引入运动时定量跟踪准确性。当特定目标#3的末端结束时,将证明可行性,该系统可以在测量位于跟踪导管50mm之内的2个跟踪电极(已知相距20mm)之间的距离时证明低2mm的误差。成功完成基准验证后,将开始由大型动物研究组成。公共卫生相关性:心律异常遭受越来越多的患者,仅美国就有6至1000万人。微创手术(例如导管消融)迅速成为消除心律不齐并恢复正常心跳的首选方法。拟议的项目旨在开发下一代技术,以在3D空间中更准确地将导管置于心脏室内,以提高治疗程序的安全性和有效性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Doron Harlev其他文献
Doron Harlev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Doron Harlev', 18)}}的其他基金
Rapid High-Resolution Electroanatomical Cardiac Mapping System for the Treatment
用于治疗的快速高分辨率电解剖心脏标测系统
- 批准号:
7745680 - 财政年份:2009
- 资助金额:
$ 18万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Deciphering molecular mechanisms controlling age-associated uterine adaptabilityto pregnancy
破译控制与年龄相关的子宫妊娠适应性的分子机制
- 批准号:
10636576 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Perception of Dead Conspecifics modulates neural signaling and lifespan in Caenorhabditis elegans
对死亡同种的感知调节秀丽隐杆线虫的神经信号和寿命
- 批准号:
10828478 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Program the Immune System against RAS-driven Cancer
对免疫系统进行编程以对抗 RAS 驱动的癌症
- 批准号:
10612257 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Metabolic impairment plays a critical role in radiation-induced T cell immune dysfunction
代谢损伤在辐射诱导的 T 细胞免疫功能障碍中起着关键作用
- 批准号:
10474738 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Novel Reengineered Microbiome-based Biologic Therapy to Treat Cognitive and Behavioral Symptoms of Alzheimer's Disease and Related Dementias
基于微生物组的新型生物疗法可治疗阿尔茨海默病和相关痴呆症的认知和行为症状
- 批准号:
10527152 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别: