Program the Immune System against RAS-driven Cancer
对免疫系统进行编程以对抗 RAS 驱动的癌症
基本信息
- 批准号:10612257
- 负责人:
- 金额:$ 21.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAbscopal effectAddressAdverse effectsAmino Acid SequenceAntibodiesAntigen TargetingAntigen-Presenting CellsAntineoplastic AgentsBindingBiological ProcessBiological ProductsCancer DetectionCancer ModelCancerousCell DeathCell TransplantationCellsCollectionCultured CellsDNA-Protein InteractionDataDedicationsDistantEngineeringEquus caballusEventExcisionExhibitsGenerationsGenesGoalsGrantHumanImmuneImmune responseImmune systemImmunityImmunologic StimulationImmunotherapyIn VitroInnovative TherapyInterventionKRAS oncogenesisKRAS2 geneLearningLentivirus VectorLibrariesMalignant NeoplasmsMediatingMedicineMethodsModalityMolecularMutationOncogenicOutcomeOutputPancreatic Ductal AdenocarcinomaPatientsPeptide HydrolasesPerformancePharmaceutical PreparationsPhilosophyPhysiciansPositioning AttributePrimary NeoplasmProcessProtein EngineeringProtein SecretionProteinsPublic HealthQuality of lifeRAS driven cancerRadiation therapyResearch PersonnelSignal TransductionSystemT-Cell ActivationT-LymphocyteTechnologyTestingTherapeuticTimeVaccinationVaccinesVariantbioluminescence imagingcancer cellcancer typecell typechemotherapyconventional therapydesignexperienceimmunogenicimprovedin vivointercellular communicationlaboratory experiencemouse modelmutantneoantigen vaccineneoantigensnovelnovel strategiesnovel therapeutic interventionnovel therapeuticsoperationpancreatic ductal adenocarcinoma cellpancreatic ductal adenocarcinoma modelpre-clinicalprogramssensorsmall moleculesynergismtooltumor
项目摘要
Abstract
Despite the great progress in recent decades, many types of cancer remain almost fatal. Pancreatic
ductal adenocarcinoma (PDAC) is a remarkable example. One of the challenges is that the vast majority (95%)
of PDACs are driven by mutations within a gene called KRAS, and these KRAS mutations are notoriously difficult
to target with conventional drugs. The first generation of cancer drugs are based on small molecules, the second
generation biologics (large biomolecules such as antibodies that specifically bind to cancer cells), and the latest
generation cells (engineered to recognize and ablate cancer cells). Here our long-term goal is to demonstrate a
new generation of therapeutics, using “circuits” as medicine. Circuits metaphorically refer to collections of
biomolecules engineered to regulate each other and process information inside living cells. While conventional
analyses output metrics to inform physicians, who then make therapeutic decisions, our circuits close the loop,
and will serve as both the analytic and the therapeutic tools. It is a molecular and cellular analysis technology
that queries living cells and actuates therapeutic outputs in real time without human intervention.
Specifically, we will create circuits to program the immune system and emulate the “abscopal effect”, the
occasional observation that distant tumors shrink when local tumors are treated, most likely due to the immune
system learning the “signature” of the treated tumors and then extrapolating. We will first create the building
blocks for such circuits: sensors that can interrogate whether a cell is in a cancerous state, actuators that can
control the signals sent by cells to engage the immune system, and processors that connect the sensors and
the actuators. These efforts will benefit from our experience of building circuits exclusively using proteins, which
features technical advantages, such as ease of delivery and robustness of functionality in different cellular
contexts, compared to more conventional ways of building circuits based on protein-DNA interactions. We will
then assemble these building blocks into circuits, and quantify and optimize their operation in cultured cells.
Leveraging our expertise in mouse models of PDACs, we will finally test these circuits’ efficacy in vivo. The
premise is to program the outputs specifically from cancer cells to mobilize the immune system and then lyse
these cells to grant the immune system access to all protein sequences that are uniquely present in cancer.
These dead cancer cells will serve essentially as vaccines against other cells that exhibit similar protein
sequence profiles. We will achieve this vaccination effect by either mimicking a specific type of cell death known
to mobilize the immune system, or program the cancer cells to directly and artificially activate T cells – immune
cells responsible for recognizing and ablating cancer cells.
The expected outcomes of this proposal are not only preclinical evidence supporting a novel, powerful
therapy for KRAS-driven PDAC, but also a proof of principle for the biomedical promise of synthetic biomolecular
circuits for other recalcitrant types of cancer and beyond.
抽象的
尽管近几十年来取得了巨大进展,但许多类型的胰腺癌仍然几乎是致命的。
导管腺癌(PDAC)就是一个显着的例子,挑战之一是绝大多数(95%)。
的 PDAC 是由 KRAS 基因内的突变驱动的,而这些 KRAS 突变是出了名的困难
第一代癌症药物是基于小分子的,第二代是基于小分子的。
一代生物制剂(大生物分子,例如特异性结合癌细胞的抗体),以及最新的
一代细胞(旨在识别和消除癌细胞)。
新一代疗法,使用“电路”作为药物。电路隐喻地指的是集合。
生物分子被设计为在活细胞内相互调节和处理信息。
分析输出指标以告知医生,然后医生做出治疗决策,我们的电路闭合循环,
并将作为分析和治疗工具。它是一种分子和细胞分析技术。
无需人工干预即可实时查询活细胞并启动治疗输出。
具体来说,我们将创建电路来对免疫系统进行编程并模拟“远隔效应”,即
偶尔观察到,当局部肿瘤得到治疗时,远处的肿瘤会缩小,这很可能是由于免疫系统的作用
系统学习所治疗肿瘤的“特征”,然后进行推断,我们将首先创建建筑物。
此类电路的模块:可以询问细胞是否处于癌变状态的传感器,可以
控制细胞发送的信号以吸引免疫系统,以及连接传感器和处理器的处理器
这些努力将受益于我们专门使用蛋白质构建电路的经验。
具有技术优势,例如易于交付和在不同蜂窝中的功能稳健性
与基于蛋白质-DNA 相互作用构建电路的更传统方法相比。
然后将这些构建块组装成电路,并量化和优化它们在培养细胞中的运行。
利用我们在 PDAC 小鼠模型方面的专业知识,我们最终将测试这些电路在体内的功效。
前提是专门对癌细胞的输出进行编程,以动员免疫系统,然后裂解
这些细胞使免疫系统能够接触到癌症中独特存在的所有蛋白质序列。
这些死亡的癌细胞本质上将充当针对具有类似蛋白质的其他细胞的疫苗
我们将通过模仿已知的特定类型的细胞死亡来实现这种疫苗接种效果。
调动免疫系统,或对癌细胞进行编程,直接人工激活 T 细胞 – 免疫
负责识别和消除癌细胞的细胞。
该提案的预期结果不仅是支持新颖、强大的临床前证据
KRAS 驱动的 PDAC 疗法,也是合成生物分子生物医学前景的原理证明
其他顽固性癌症及其他癌症的回路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaojing J Gao其他文献
Xiaojing J Gao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaojing J Gao', 18)}}的其他基金
A Novel Class of Synthetic Receptors to Empower the Age of mRNA Therapies
一类新型合成受体将推动 mRNA 治疗时代的到来
- 批准号:
10687517 - 财政年份:2023
- 资助金额:
$ 21.8万 - 项目类别:
Cancer Classifiers Based on RNA Sensors in Living Cells
基于活细胞中 RNA 传感器的癌症分类器
- 批准号:
10570559 - 财政年份:2022
- 资助金额:
$ 21.8万 - 项目类别:
Cancer Classifiers Based on RNA Sensors in Living Cells
基于活细胞中 RNA 传感器的癌症分类器
- 批准号:
10707194 - 财政年份:2022
- 资助金额:
$ 21.8万 - 项目类别:
Synthetic DNA-free Circuits for “Scarless” Programming of Mammalian Cells
用于哺乳动物细胞“无痕”编程的合成无 DNA 电路
- 批准号:
10115864 - 财政年份:2020
- 资助金额:
$ 21.8万 - 项目类别:
Synthetic DNA-free Circuits for “Scarless” Programming of Mammalian Cells
用于哺乳动物细胞“无痕”编程的合成无 DNA 电路
- 批准号:
10379933 - 财政年份:2020
- 资助金额:
$ 21.8万 - 项目类别:
相似国自然基金
靶向VEGFR2增强放疗-免疫检查点抑制剂联合介导的远隔效应抑制肿瘤进展的机制研究
- 批准号:82360580
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
抑制巨噬细胞CD38活性减轻T细胞衰老进而增强放射-免疫远隔效应的作用与机制研究
- 批准号:82373021
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
慢性应激诱导YAP的O-GlcNAc修饰抑制宫颈癌放疗敏感性及远隔效应的机制和临床转化研究
- 批准号:82373207
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
共激活先天和适应性免疫的乏氧响应脂质体药物构建及其增强三阴乳腺癌立体定向放疗效果和远隔效应的研究
- 批准号:82372123
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
表面工程化纳米药物的免疫细胞增强转移性肺癌治疗中远隔效应的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Effects of FLASH Radiation on Cancer and the Immune Response
闪光辐射对癌症和免疫反应的影响
- 批准号:
10429937 - 财政年份:2019
- 资助金额:
$ 21.8万 - 项目类别:
Effects of FLASH Radiation on Cancer and the Immune Response
闪光辐射对癌症和免疫反应的影响
- 批准号:
10188463 - 财政年份:2019
- 资助金额:
$ 21.8万 - 项目类别:
Effects of FLASH Radiation on Cancer and the Immune Response
闪光辐射对癌症和免疫反应的影响
- 批准号:
10665654 - 财政年份:2019
- 资助金额:
$ 21.8万 - 项目类别:
The abscopal effect of nanosecond electric pulse tumor ablation and its enhancement for metastatic breast cancer
纳秒电脉冲肿瘤消融及其强化治疗转移性乳腺癌的远隔效应
- 批准号:
9756343 - 财政年份:2018
- 资助金额:
$ 21.8万 - 项目类别:
Bench to Bedside: Non-invasive Treatment of Tumors in Children
从实验室到临床:儿童肿瘤的无创治疗
- 批准号:
10262659 - 财政年份:
- 资助金额:
$ 21.8万 - 项目类别: