In vivo feasibility of a smart needle ablation treatment for liver cancer

智能针消融治疗肝癌的体内可行性

基本信息

  • 批准号:
    10699190
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Project Summary A significant number (~30-50%) of liver cancers have no curative treatments due to their proximity to critical anatomy. Minimally invasive thermal ablation is a promising treatment for these untreatable solid tumors. If delivered precisely, ablations offer the treatment efficacy of traditional surgery with lower patient risk, clinician time, and overall cost. Existing ablation technology, however, does not offer the necessary precision. Ablation tools do not provide feedback on (1) whether or not the probe has been accurately placed within the tumor, (2) if the tumor has been completely destroyed, or (3) if surrounding healthy tissue has been left intact. Because of this lack of precision and feedback, ablation cannot currently be used to treat tumors near critical anatomy. A proposed solution to these currently untreatable cancers is an ultraprecise ablation needle, embedded with high-resolution ultrasound sensors at its tip. These sensors will provide multiple benefits: aiding the clinician in placing the device correctly by imaging the tumor relative to the needle, delivering the treatment energy to a precise location through focusing, and providing real-time monitoring of the procedure by detecting the thermal changes in tissue-all without the need for a large imaging system. This innovation will allow surgeons to complete an ablation with the required precision to treat even the most difficult-to-reach cancers. This Phase 1 SBIR proposal will demonstrate the capabilities of small-scale ultrasound transducers to precisely control ablations near critical anatomical structures (e.g., arteries) in an in vivo porcine model through three specific aims: (1) optimization of previously developed ultrasound-based ablation zone estimation in ex vivo liver tissue using deep learning and physics-based simulations, (2) ablation zone estimation in an in vivo porcine liver model, and (3) demonstration of in vivo closed-loop ablation zone control near critical anatomy (artery in liver). Completion of this phase will demonstrate the key technology in a pilot animal study, where Phase 2 work would address critical development milestones to commercialization for an anticipated Class 2 device (approval via de nova regulatory pathway).
项目概要 相当数量(约 30-50%)的肝癌由于接近危急状态而无法治愈。 解剖学。微创热消融是治疗这些无法治疗的实体瘤的一种有前途的治疗方法。如果 精确地进行消融,提供传统手术的治疗效果,同时降低患者风险, 临床医生的时间和总体成本。然而,现有的消融技术无法提供必要的精度。 消融工具不提供以下方面的反馈:(1) 探头是否已准确放置在 肿瘤,(2) 如果肿瘤已被完全破坏,或 (3) 如果周围的健康组织已留下 完好无损的。由于缺乏精确度和反馈,消融目前不能用于治疗附近的肿瘤。 批判性解剖学。 针对这些目前无法治疗的癌症提出的解决方案是使用超精密消融针,其中嵌入了 其尖端有高分辨率超声波传感器。这些传感器将提供多种好处:帮助临床医生 通过对肿瘤相对于针进行成像来正确放置装置,将治疗能量传递到 通过聚焦进行精确定位,并通过检测来提供过程的实时监控 组织中的热变化——所有这些都不需要大型成像系统。这项创新将允许 外科医生能够以所需的精度完成消融,以治疗最难到达的癌症。 该第一阶段 SBIR 提案将展示小型超声换能器的能力 在猪体内模型中精确控制关键解剖结构(例如动脉)附近的消融 通过三个具体目标:(1)优化先前开发的基于超声的消融区域 使用深度学习和基于物理的模拟估计离体肝组织,(2) 消融区域 体内猪肝脏模型的估计,以及(3)体内闭环消融区域的演示 控制关键解剖结构附近(肝动脉)。本阶段完成后将展示关键技术 在一项试点动物研究中,第二阶段工作将解决关键的发展里程碑 预期 2 类设备的商业化(通过 de nova 监管途径批准)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alireza Mashal其他文献

Alireza Mashal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

多孔声学超材料宏微观结构耦合强化吸声机制与多尺度结构设计技术
  • 批准号:
    52375122
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
轨道模式依赖的声学拓扑态及其应用研究
  • 批准号:
    12304492
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
声学拓扑安德森绝缘体拓扑特性研究
  • 批准号:
    12304486
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
鼓泡床密相区温度、颗粒浓度与气泡分布的二维同步声学双参数成像
  • 批准号:
    62301355
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非厄米声学晶格系统中的拓扑物理研究
  • 批准号:
    12374418
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

Macrophage-Mediated Delivery of Acoustically Propelled Nanoparticles for Sensitizing Immunologically Cold Tumors
巨噬细胞介导的声学推进纳米颗粒的递送用于敏化免疫冷肿瘤
  • 批准号:
    10512775
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
High Resolution Ultrasound in Interventional Radiology
介入放射学中的高分辨率超声
  • 批准号:
    10448971
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
  • 批准号:
    10587466
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
Macrophage-Mediated Delivery of Acoustically Propelled Nanoparticles for Sensitizing Immunologically Cold Tumors
巨噬细胞介导的声学推进纳米颗粒的递送用于敏化免疫冷肿瘤
  • 批准号:
    10646371
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
  • 批准号:
    10708132
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了