High Resolution Ultrasound in Interventional Radiology
介入放射学中的高分辨率超声
基本信息
- 批准号:10448971
- 负责人:
- 金额:$ 62.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-04 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AbdomenAblationAcousticsAddressAdultAdverse effectsAlgorithmsAnatomyAnimalsBiopsyBlood flowBuffersCaliforniaCancerousClinicalColorContrast MediaCrystallizationCystDependenceDevelopmentDiagnosisDiagnostic ImagingDimensionsDiseaseElectronicsElementsExposure toFamily suidaeFutureGeometryHospitalsImageImage EnhancementImaging DeviceIndividualInterventionIntervention StudiesInterventional ImagingInterventional radiologyIonizing radiationLesionLiquid substanceLiverMagnetic Resonance ImagingMapsMedical ImagingMethodsMonitorNeedle biopsy procedureNeedlesNoiseOperative Surgical ProceduresPatientsPerformancePhysiologyProceduresProtocols documentationRadiationRadiation Dose UnitRadiology SpecialtyResolutionResource-limited settingScanningSignal TransductionSpeedSystemTechnologyTestingTimeTissuesTransducersUltrasonographyUniversitiesUpdateVisionVisualizationX-Ray Computed Tomographyangiogenesisbaseclinical applicationcontrast enhancedcontrast enhanced computed tomographycontrast imagingcostdesignhigh resolution imagingimage guidedimage guided interventionimaging modalityimaging softwareimaging studyimaging systemimprovedin vivointegrated circuitliver ablationliver imagingliver visualizationmicrowave ablationminimally invasivenephrotoxicitynovelthree-dimensional visualizationtooltransmission processtumorultrasoundvectorvolunteer
项目摘要
We seek to create a real-time ultrasound imaging tool for guiding interventions, with resolution that exceeds that
obtained using CT but without the need for radiation or iodinated contrast agents. Advancements in medical
imaging and device technology allow minimally-invasive procedures for the diagnosis and treatment of various
disorders. Real-time ultrasound has become an integral aspect of many image-guided interventions. Advantages
of US imaging include the low cost, lack of ionizing radiation and real-time visualization of anatomy and
physiology. Our approach will be to: 1) create an extended aperture 2D transducer (512 by 16 elements) capable
of imaging an extended azimuthal field of 9 cm with in-plane resolution of hundreds of microns (to provide a wide
field of view at high resolution), 2) apply the 2D array to image multiple adjacent planes (to facilitate the view of
biopsy needles or ablations), 3) achieve a 30 volume per second update rate by using plane wave transmissions
to enhance contrast imaging modes and implement novel beam formation algorithms, 4) integrate methods for
aberration correction, and 5) apply this technology in B-Mode, color Doppler, volumetric vector flow imaging and
contrast imaging. The array will be realized using tiled modules that can be switched in a mode-dependent
fashion to accomplish B-Mode imaging, color Doppler and contrast imaging. Over the past 4 years, Stanford and
the University of Southern California have designed an adult extended-aperture abdominal-imaging system and
demonstrated the improved spatial resolution, field of view and contrast that can be achieved. We exploit these
tools here to develop a high-volume rate capability for monitoring liver interventions. Our aims to accomplish this
are to: 1) Create and integrate tileable acoustic/electronic modules to implement signal buffering and multiplexing
and create a large aperture array with elevational focusing. Utilizing newly designed Integrated Circuits (IC)’s
and highly sensitive and wide-bandwidth single crystal transducer material, we will construct individual 2D array
modules with co-integrated transducers and electronics. 2) Optimize the protocols for guiding biopsy and ablation
in phantom and animal studies. A) Create software for imaging of small lesions and microwave ablation. We
will implement singular value decomposition (SVD) based beam formation for aberration correction. B) Evaluate
performance in phantoms and ex vivo tissue. C) Assess speed and accuracy of needle placements. D) Conduct
contrast imaging and ablative studies in porcine liver in vivo. 3) Conduct diagnostic and interventional imaging
studies as a proof of concept. A) Test the protocols to image the liver of adult volunteers and establish the signal
to noise ratio in vivo as compared with phantoms. B) Assess 3D visualization of liver vasculature and lesions in
patients referred for MR or CT imaging of a liver lesion. C) Compare the 3D visualization of ablated zones to
contrast-enhanced CT (CECT) in patients that are referred for liver ablation.
我们寻求创建一种用于指导干预的实时超声成像工具,其分辨率超过
使用 CT 获得,但无需辐射或碘造影剂。医学上的进步。
成像和设备技术允许微创手术诊断和治疗各种疾病
实时超声已成为许多图像引导干预措施的一个组成部分。
美国成像的优点包括低成本、缺乏电离辐射和解剖结构的实时可视化
我们的方法是:1)创建一个具有扩展孔径的 2D 传感器(512 x 16 个元件)。
成像 9 厘米的扩展方位角场,面内分辨率为数百微米(以提供宽范围
2)应用2D阵列对多个相邻平面进行成像(以方便查看
活检针或消融),3)通过使用平面波传输实现每秒 30 体积的更新率
为了增强对比度成像模式并实现新颖的波束形成算法,4)集成方法
像差校正,5) 将此技术应用于 B 模式、彩色多普勒、体积矢量流成像和
该阵列将使用可以根据模式进行切换的平铺模块来实现。
在过去的 4 年里,斯坦福大学和
南加州大学设计了一种成人大孔径腹部成像系统
改进的空间分辨率、视野和对比度表明我们可以利用这些来实现。
我们的目标是开发高容量监测肝脏干预的工具。
目的是: 1) 创建并集成可平铺的声学/电子模块以实现信号缓冲和复用
并利用新设计的集成电路 (IC) 创建大孔径阵列。
和高灵敏度、宽带宽的单晶换能器材料,我们将构建单独的二维阵列
2)优化指导活检和消融的方案
A) 创建用于小病变成像和微波消融的软件。
将实施基于奇异值分解 (SVD) 的波束形成以进行像差校正 B) 评估。
体模和离体组织的性能 C) 评估针放置的速度和准确性 D) 进行。
猪肝脏体内对比成像和消融研究 3) 进行诊断和介入成像。
研究作为概念证明 A) 测试对成年志愿者的肝脏进行成像并建立信号的协议。
与体模相比的体内噪声比 B) 评估肝脏脉管系统和病变的 3D 可视化。
转诊进行肝脏病变 MR 或 CT 成像的患者 C) 将消融区域的 3D 可视化与
对转诊进行肝脏消融的患者进行对比增强 CT (CECT)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katherine W Ferrara其他文献
Efficient array design for sonotherapy
声波治疗的高效阵列设计
- DOI:
10.1088/0031-9155/53/14/014 - 发表时间:
2008-07-21 - 期刊:
- 影响因子:3.5
- 作者:
Douglas Stephens;D. Kruse;Arif S Ergun;S. Barnes;X Ming Lu;Katherine W Ferrara - 通讯作者:
Katherine W Ferrara
Katherine W Ferrara的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katherine W Ferrara', 18)}}的其他基金
High Resolution Ultrasound in Interventional Radiology
介入放射学中的高分辨率超声
- 批准号:
10584507 - 财政年份:2022
- 资助金额:
$ 62.46万 - 项目类别:
Quantitative volumetric ultrasonic and photoacoustic tomography
定量体积超声和光声断层扫描
- 批准号:
10374704 - 财政年份:2021
- 资助金额:
$ 62.46万 - 项目类别:
Quantitative volumetric ultrasonic and photoacoustic tomography
定量体积超声和光声断层扫描
- 批准号:
10541211 - 财政年份:2021
- 资助金额:
$ 62.46万 - 项目类别:
相似国自然基金
微波敏感型铁死亡纳米放大器的构建及其增敏肝癌消融-免疫联合治疗的应用与机制研究
- 批准号:82302368
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
低密度中性粒细胞促进早期乳腺癌微波消融治疗后复发转移的作用及机制研究
- 批准号:82303710
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
纳米刀消融通过METTL5介导的核糖体18S rRNA m6A修饰募集MDSC促进肝癌复发的作用及机制研究
- 批准号:82373004
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
典型草原不同退化类型雪水消融过程水分转换效率研究
- 批准号:32360295
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于荷顺铂温敏纳米凝胶载KU135介入栓塞联合射频消融治疗肝癌的实验研究
- 批准号:82302331
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
High Resolution Ultrasound in Interventional Radiology
介入放射学中的高分辨率超声
- 批准号:
10584507 - 财政年份:2022
- 资助金额:
$ 62.46万 - 项目类别:
Advanced Treatment Endpoint Assessment in MR-guided Focused Ultrasound
MR 引导聚焦超声的高级治疗终点评估
- 批准号:
10115726 - 财政年份:2020
- 资助金额:
$ 62.46万 - 项目类别:
Deployable Ultrasound Applicators for MRI Guided Thermal Therapy of Pancreatic Cancer
用于 MRI 引导胰腺癌热治疗的可展开超声探头
- 批准号:
9917574 - 财政年份:2018
- 资助金额:
$ 62.46万 - 项目类别:
Image-Guided Transurethral HIFU for Genitourinary Therapy
图像引导经尿道 HIFU 泌尿生殖治疗
- 批准号:
10452639 - 财政年份:2015
- 资助金额:
$ 62.46万 - 项目类别:
Image-Guided Transurethral HIFU for Genitourinary Therapy
图像引导经尿道 HIFU 泌尿生殖治疗
- 批准号:
10259640 - 财政年份:2015
- 资助金额:
$ 62.46万 - 项目类别: