A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
基本信息
- 批准号:10587466
- 负责人:
- 金额:$ 54.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D ultrasoundAblationAcousticsAddressAdoptionAdvanced DevelopmentAnatomyAreaAxillary lymph node groupBasic ScienceBenchmarkingBenignBiopsyBloodBlood flowBreast Cancer PatientCardiologyCellular PhoneClinicClinicalClinical ResearchClipCodeDataDependenceDevelopmentDevicesDiagnosisDiagnosticDiscipline of obstetricsEquipmentFoundationsFrequenciesGynecologyIllinoisImageImaging technologyInterventionIonizing radiationMalignant - descriptorMedicalMedical Device DesignsMotionNeoadjuvant TherapyOperative Surgical ProceduresPathologyPatientsPerformancePhasePlayProceduresRadiology SpecialtyResolutionRoleScanningSolidSpeedSystemTechniquesTechnologyTexasThree-Dimensional ImagingTimeTissuesTrainingTransducersUltrasonic TransducerUltrasonographyUniversitiesWaterWorkbasechemotherapyclinical applicationclinical imagingcostdisease diagnosiselastographyfallshandheld equipmentimaging modalityimaging studyimaging systemimprovedin vivolight weightmalignant breast neoplasmmeetingsnon-invasive imagingnovelportabilityradiologistsensortechnology research and developmenttoolultrasounduser-friendlywirelesswireless communication
项目摘要
PROJECT SUMMARY/ABSTRACT
Three-dimensional ultrasound imaging (3D-US) is an essential clinical tool for visualizing, navigating, and
investigating patient anatomy and pathologies in real time in 3D. Owing to its moderate cost and lack of ionizing
radiation, 3D-US plays an important role in many clinical applications for diagnosis and intervention. Despite the
significant clinical value and potential, 3D-US is not a widely accessible and capable technology with its current
implementations: existing 3D-US solutions are challenged by many limitations such as low imaging speed, low
functionality, bulky devices that are inconvenient to use, and a high cost of designated equipment. For decades,
there has been a long-standing quest for developing an accessible, functional, and user-friendly 3D-US
technology. In this proposal, we will develop a new 3D-US solution (called FASTER) that uses a novel, fast-tilting
microfabricated acoustic reflector to achieve high-speed and high-functionality 3D-US imaging. The acoustic
reflector is water-immersible and enclosed in a clip-on device that is compact, lightweight, and low-cost. It can
be easily attached to and removed from different types of ultrasound transducers to turn a conventional 2D
ultrasound system into 3D. Unlike conventional 3D-US technologies (e.g., wobbler transducers and 2D matrix
arrays), FASTER does not require the procurement of additional ultrasound transducers for different applications.
Also, FASTER achieves a much higher imaging volume rate (up to 1000 Hz) than conventional 3D-US
technologies. FASTER is compatible with most ultrasound systems on the market ranging from premium
scanners to portable and handheld devices. In this proposal, we will conduct basic technology development
research and carry out preliminary clinical studies to build a solid technical foundation for the FASTER 3D-US
technology. In Aim 1 we will focus on developing the Phase-1 FASTER device that uses a double-axis reflector
for extended range of imaging volume rate and field-of-view (FOV). We will also develop Phase-1 FASTER into
a stand-alone device that does not need external equipment and communicates wirelessly with the ultrasound
system. Aim 2 will focus on developing advanced imaging modes for FASTER, including 3D blood flow imaging
(3D-BFI) and 3D shear wave elastography (3D-SWE). Pilot clinical studies will be conducted for both Aims 1 and
2 to facilitate the development and optimization of the FASTER device and imaging sequences. In Aim 3 we will
conduct a clinical study to evaluate the performance of FASTER 3D-US in characterizing suspicious axillary
lymph nodes (ALNs) for breast cancer patients undergoing clinically indicated biopsy of ALN. We will also
evaluate the performance of FASTER in localizing clipped ALNs from patients undergoing neoadjuvant
chemotherapy. The study aims will be carried out by a team of experts in ultrasound imaging, micro sensors and
systems, medical device design, and breast cancer from the campuses of University of Illinois Urbana-
Champaign, Texas A&M University, and Mayo Clinic.
项目概要/摘要
三维超声成像 (3D-US) 是一种重要的临床工具,用于可视化、导航和诊断
以 3D 方式实时研究患者的解剖结构和病理情况。由于其成本适中且缺乏电离
辐射,3D-US 在诊断和干预的许多临床应用中发挥着重要作用。尽管
3D-US 具有显着的临床价值和潜力,但就目前的情况而言,它还不是一项可广泛使用且功能强大的技术
实现:现有的3D-US解决方案受到许多限制的挑战,例如成像速度低、低
功能单一、设备体积大、使用不方便、指定设备成本高。几十年来,
长期以来,人们一直在寻求开发一种易于访问、功能齐全且用户友好的 3D-US
技术。在本提案中,我们将开发一种新的 3D-US 解决方案(称为 FASTER),该解决方案使用新颖的快速倾斜技术
微加工声学反射器可实现高速、高性能的 3D-US 成像。声学
反射器可浸入水中,并封装在紧凑、轻便且低成本的夹式装置中。它可以
可以轻松地连接到不同类型的超声换能器上或从其上拆卸,从而将传统的 2D
超声系统进入 3D。与传统的 3D-US 技术(例如摆动传感器和 2D 矩阵
阵列),FASTER 不需要为不同的应用采购额外的超声换能器。
此外,与传统 3D-US 相比,FASTER 实现了更高的成像体积速率(高达 1000 Hz)
技术。 FASTER 与市场上的大多数超声系统兼容,包括高级超声系统
扫描仪到便携式和手持设备。在这个提案中,我们将进行基础技术开发
研究并开展前期临床研究,为FASTER 3D-US奠定坚实的技术基础
技术。在目标 1 中,我们将重点开发使用双轴反射器的 Phase-1 FASTER 设备
用于扩展成像体积速率和视场 (FOV) 范围。我们还将把第一阶段的 FASTER 开发为
独立设备,不需要外部设备并与超声波进行无线通信
系统。目标 2 将专注于开发 FASTER 的先进成像模式,包括 3D 血流成像
(3D-BFI) 和 3D 剪切波弹性成像 (3D-SWE)。将为目标 1 和
2 促进 FASTER 设备和成像序列的开发和优化。在目标 3 中,我们将
进行临床研究以评估 FASTER 3D-US 在表征可疑腋窝方面的性能
接受临床指示的 ALN 活检的乳腺癌患者的淋巴结 (ALN)。我们还将
评估 FASTER 在定位接受新辅助治疗的患者截断的 ALN 方面的性能
化疗。该研究的目标将由超声成像、微传感器和
伊利诺伊大学厄巴纳分校校园的系统、医疗设备设计和乳腺癌-
尚佩恩、德克萨斯农工大学和梅奥诊所。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pengfei Song其他文献
Pengfei Song的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pengfei Song', 18)}}的其他基金
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
- 批准号:
10848559 - 财政年份:2023
- 资助金额:
$ 54.79万 - 项目类别:
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
- 批准号:
10708132 - 财政年份:2022
- 资助金额:
$ 54.79万 - 项目类别:
Next-Generation Ultrasound Localization Microscopy
下一代超声定位显微镜
- 批准号:
10039725 - 财政年份:2020
- 资助金额:
$ 54.79万 - 项目类别:
Early prediction of colorectal liver metastases treatment response with ultrasound microvessel imaging
超声微血管成像早期预测结直肠肝转移治疗反应
- 批准号:
10084826 - 财政年份:2017
- 资助金额:
$ 54.79万 - 项目类别:
相似海外基金
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
- 批准号:
10708132 - 财政年份:2022
- 资助金额:
$ 54.79万 - 项目类别:
AI-assisted Imaging and Prediction of Cardiac Arrhythmia Origins using 4D Ultrasound
使用 4D 超声进行人工智能辅助成像和心律失常起源预测
- 批准号:
10473146 - 财政年份:2022
- 资助金额:
$ 54.79万 - 项目类别:
Simultaneous MRI/US for real-time liver ablation guidance and confirmation
同步 MRI/US 用于实时肝脏消融指导和确认
- 批准号:
10677721 - 财政年份:2022
- 资助金额:
$ 54.79万 - 项目类别:
Automated three-dimensional spinal navigation system for chronic pain therapy
用于慢性疼痛治疗的自动化三维脊柱导航系统
- 批准号:
10490879 - 财政年份:2021
- 资助金额:
$ 54.79万 - 项目类别: