A synergistic in vitro-in silico model of the placental barrier for predicting fetal exposure and toxicity of xenobiotic compounds
胎盘屏障的协同体外计算机模拟模型,用于预测胎儿的外源化合物暴露和毒性
基本信息
- 批准号:10698740
- 负责人:
- 金额:$ 85.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AcetaminophenActive Biological TransportAddressAnatomyAntibodiesAutomobile DrivingBiologicalBiological AssayBlood VesselsCalciumCell DeathCell LineCellsCellular MorphologyChemicalsCirculationComputer ModelsDataDependenceDevelopmentDevicesDextransDimensionsDisadvantagedDiscipline of obstetricsDrug KineticsDrug PrescriptionsDrug TransportEndothelial CellsEthicsEvaluationExclusionExposure toFetusGeneticGenetic Complementation TestGestational AgeGoalsGuidelinesHealthHormonesHumanHuman Chorionic GonadotropinHuman bodyImmunoglobulin GIn VitroInflammationInulinLipidsLiteratureMaintenanceMaternal ExposureMediatingMedicalMedical centerMicrofluidic MicrochipsMicrofluidicsModelingMorphologyMothersNutrientOrganPalmitatesPerfusionPermeabilityPharmaceutical PreparationsPhasePhenotypePhysiologicalPhysiologyPlacentaPlacental BiologyPositioning AttributePregnant WomenPropertyProtocols documentationRegulationReperfusion TherapyReportingResearchResolutionRoleSourceStandardizationSyncytiotrophoblastSystemTestingTherapeuticThird Pregnancy TrimesterTimeToxic effectToxinVascular Endothelial CellWaste ProductsXenobioticsbarrier to testingcell typecytotrophoblastdesigneffective therapyex vivo perfusionexperienceexperimental studyfetalhydrophilicityimprovedin silicoin vitro Modelin vivoin vivo evaluationinorganic phosphateionizationlipophilicitymultidisciplinarymultiplex assayoxygen transportpassive transportpharmacokinetic modelphase 1 studypredictive modelingprenatal exposureprotein expressionprototypesuccesstooltreatment strategytrophoblastuptake
项目摘要
The placenta is one of the least understood organs of the human body. Acting as a barrier between
mother and fetus, the placenta mediates transport of oxygen, nutrients, fetal waste products and other
compounds present in maternal circulation. Full term placental explants are currently the most widely
used models for assessing transport and barrier function. Unfortunately, these models are dependent
upon the availability of fresh placentas. There is a critical need for standardized tools that quantitatively
assess placental barrier transport to enable prediction of maternal and fetal pharmacokinetics (PK) and
placental and fetal toxicity. In Phase I, we developed and demonstrated a physiologically relevant,
microfluidic model of the placental barrier, comprising the maternal vasculature, placenta and fetal
vasculature. Immortalized cytotrophoblasts were differentiated in the device into syncytiotrophoblasts,
as verified by extensive characterization. Barrier function in the model was demonstrated by showing
size-dependent permeability of compounds across the device. In parallel, we developed and validated
an in vitro model of the microfluidic device, as a first step toward development of a physiologically-
based, high-resolution model of transplacental species transport. In Phase II, we will continue to
develop and integrate our in vitro and in silico components of this tool kit. We will extend the microfluidic
model to comprise primary cells (trophoblasts and endothelial cells) and determine morphological,
genetic and phenotypic differences between it and the Phase I cell line-based model. Further, we will
test transplacental transport for a panel of compounds including xenobiotics, endogenous molecules,
lipids, antibodies and toxins, for thorough evaluation of barrier function and replication of species
transport in vivo. In parallel, we will develop a physiologically-based (PB), high-resolution model of the
placenta to support mechanistic modeling of transplacental species transport. This model will be
integrated with maternal and fetal PBPK models to enable prediction of maternal and fetal PK. Data
obtained from in vitro experiments will be used to characterize drug transport at the level of the whole
placenta using the integrated toolkit. The computational model will account for passive and active
transport. The development of this platform will aide in the prediction of chemicals’ negative health
effects in humans and address key limitations of current in vitro barrier test systems. A multidisciplinary
team with expertise in microfluidic cell-based assays and placental biology has been assembled for the
successful completion of the proposed project. By providing a more realistic representation of the
placental barrier both in vitro and in silico, the toolkit promises to establish a new paradigm for
assessment of the placenta as a barrier.
胎盘是人体最不为人所知的器官之一,充当着人体之间的屏障。
母亲和胎儿,胎盘介导氧气、营养物质、胎儿废物和其他物质的运输
存在于母体循环中的化合物是目前使用最广泛的。
使用模型来评估运输和屏障功能不幸的是,这些模型是相互依赖的。
迫切需要能够定量分析的标准化工具。
评估胎盘屏障转运以预测母体和胎儿药代动力学 (PK) 和
在第一阶段,我们开发并证明了一种生理相关的、
胎盘屏障的微流体模型,包括母体脉管系统、胎盘和胎儿
永生化细胞滋养层在装置中分化为合体滋养层,
通过模型中的广泛表征验证了这一点。
同时,我们开发并验证了化合物在整个设备中的尺寸依赖性渗透性。
微流体装置的体外模型,作为开发生理学的第一步
在第二阶段,我们将继续基于高分辨率的经胎盘物种运输模型。
开发并集成该工具包的体外和计算机组件我们将扩展微流体。
模型包含原代细胞(滋养层细胞和内皮细胞)并确定形态、
它与基于 I 期细胞系的模型之间的遗传和表型差异。
测试一组化合物的经胎盘转运,包括外源性分子、
脂质、抗体和毒素,用于全面评估物种的屏障功能和复制
与此同时,我们将开发一个基于生理学(PB)的高分辨率模型。
胎盘支持跨胎盘物种运输的机械模型。
与母体和胎儿 PBPK 模型集成,以预测母体和胎儿 PK 数据。
从体外实验获得的结果将用于表征整体水平的药物转运
使用集成工具包的胎盘计算模型将考虑被动和主动。
该平台的开发将有助于预测化学品的负面健康状况。
对人类的影响并解决当前体外屏障测试系统的关键局限性。
拥有微流体细胞分析和胎盘生物学专业知识的团队已经组建
通过提供更真实的代表来成功完成拟议的项目。
该工具包有望在体外和计算机模拟中建立胎盘屏障的新范例
评估胎盘作为屏障的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carrie German其他文献
Carrie German的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carrie German', 18)}}的其他基金
Understanding Mustard Vesicants Distribution and Toxicity in the Eye Using In Vivo and In Silico Models
使用体内和计算机模型了解芥末糜烂剂在眼中的分布和毒性
- 批准号:
10709188 - 财政年份:2023
- 资助金额:
$ 85.74万 - 项目类别:
An in vitro model for screening penetration of ocular drug products
筛选眼科药品渗透的体外模型
- 批准号:
10546892 - 财政年份:2022
- 资助金额:
$ 85.74万 - 项目类别:
Real-Time Quantitation of Transport Across Vascular-Tissue Interfaces in Organ-On-Chip Models Using In Situ Mass Spectrometry
使用原位质谱法实时定量器官芯片模型中跨血管组织界面的运输
- 批准号:
10394501 - 财政年份:2022
- 资助金额:
$ 85.74万 - 项目类别:
Computational Biology (Cobi) Tools as a Framework for Physiologically-Based Pharmacokinetic/Pharmacodynamic Model Extrapolation from Rabbit to Human for Ophthalmic Drug Products
计算生物学 (Cobi) 工具作为基于生理学的药代动力学/药效学模型外推从兔到人眼科药品的框架
- 批准号:
10166845 - 财政年份:2020
- 资助金额:
$ 85.74万 - 项目类别:
Computational Biology (Cobi) Tools as a Framework for Physiologically-Based Pharmacokinetic/Pharmacodynamic Model Extrapolation from Rabbit to Human for Ophthalmic Drug Products
计算生物学 (Cobi) 工具作为基于生理学的药代动力学/药效学模型外推从兔到人眼科药品的框架
- 批准号:
10461730 - 财政年份:2020
- 资助金额:
$ 85.74万 - 项目类别:
Computational Biology (Cobi) Tools as a Framework for Physiologically-Based Pharmacokinetic/Pharmacodynamic Model Extrapolation from Rabbit to Human for Ophthalmic Drug Products
计算生物学 (Cobi) 工具作为基于生理学的药代动力学/药效学模型外推从兔到人眼科药品的框架
- 批准号:
10116143 - 财政年份:2020
- 资助金额:
$ 85.74万 - 项目类别:
相似国自然基金
大肠杆菌基因工程菌发酵生产琥珀酸过程中CO2转运与固定的协同代谢调控
- 批准号:21176059
- 批准年份:2011
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
DMS/NIGMS 1: Multiscale modeling of Notch signaling during long-range lateral inhibition
DMS/NIGMS 1:长程侧向抑制期间 Notch 信号传导的多尺度建模
- 批准号:
10797357 - 财政年份:2023
- 资助金额:
$ 85.74万 - 项目类别:
Multiscale approaches to engineering living cells for nanotherapeutic delivery
用于纳米治疗递送的活细胞工程多尺度方法
- 批准号:
10711015 - 财政年份:2023
- 资助金额:
$ 85.74万 - 项目类别:
Using a chemical biology approach to develop novel inhibitors of mitochondrial oxidative phosphorylation for the treatment of ovarian cancer
使用化学生物学方法开发用于治疗卵巢癌的新型线粒体氧化磷酸化抑制剂
- 批准号:
10260915 - 财政年份:2022
- 资助金额:
$ 85.74万 - 项目类别:
Exploiting Cancer Metabolism and Drug Efflux with Bystander-Assisted Immunotherapy
通过旁观者辅助免疫疗法利用癌症代谢和药物流出
- 批准号:
10688097 - 财政年份:2022
- 资助金额:
$ 85.74万 - 项目类别: