Real-Time Quantitation of Transport Across Vascular-Tissue Interfaces in Organ-On-Chip Models Using In Situ Mass Spectrometry
使用原位质谱法实时定量器官芯片模型中跨血管组织界面的运输
基本信息
- 批准号:10394501
- 负责人:
- 金额:$ 31.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcetaminophenAddressAlbuminsAmiodaroneAnimal ModelAnimal TestingAnimalsApplied ResearchArchitectureAwardBasic ScienceBiological AssayBiological MarkersBlood VesselsCell DeathCell SurvivalCellsCellular AssayChIP-on-chipChemicalsCoculture TechniquesCollaborationsConsumptionDevelopmentDevicesDoxorubicinDrug Delivery SystemsDrug InteractionsDrug KineticsDrug toxicityEnd Point AssayEndpoint DeterminationEngineeringEthicsFamilyFeedbackGeometryHepatocyteImageIn SituIn VitroKidneyLaboratoriesLiquid substanceLiverLocationLungMass Spectrum AnalysisMeasuresMembraneMethodsMicrofluidic MicrochipsMicrofluidicsModelingNatureNutrientOpticsOrganPharmaceutical PreparationsPharmacologic SubstancePharmacotherapyPhasePhysiologicalProcessProtocols documentationReporterResearchResearch PersonnelResolutionRoleSafetySamplingScientistSideSiteSpecific qualifier valueSurfaceSystemTechnologyTest ResultTestingTherapeuticTimeTissue ExtractsTissuesToxic effectToxicity TestsToxicologyUniversitiesVascular Endothelial CellWaste Productsbasebiomaterial compatibilitychromatin immunoprecipitationdesigndrug candidatedrug developmentimprovedin vitro testingin vivoinstrumentationmultidisciplinarynovelorgan on a chipphase 1 studypredictive modelingreal time monitoringresponsethree dimensional cell culture
项目摘要
Abstract
Current in vitro platforms are poor predictors of the in vivo safety, efficacy and pharmacokinetics of therapeutics,
owing to a significant difference in the test conditions compared to physiological conditions. Therefore, drug
toxicity testing is routinely performed using animal models. However, animal testing is expensive and time
consuming. In addition, ethical concerns about the use of animals are increasingly calling for
reduction/replacement of animal tests. To overcome these challenges, physiologically relevant organ-on-chip
assays have been developed. These assays mimic the dynamic interactions encountered during drug delivery
and recapitulates physiological flow rates, vascular architecture and the 3D nature of tissue (liver, lung, kidney,
etc.), thereby providing improved quantitative and predictive capabilities to guide the development of drugs via
accurate toxicity analysis. However, one of the critical components lacking from current organ-on-chip assays is
the real-time analysis of drug concentration at specified locations within the assay to determine drug toxicity at
defined tissue sites.
To address this need, we propose to integrate our microfluidics-based, organ-on-chip systems with on-chip mass
spectrometry analysis to measure drug concentrations across a vascularized liver construct. The Phase I effort
will focus on integration the microfluidic device with a novel mass spectrometry (MS) assay. This method enables
online temporal and spatial chemical characterization of chemical constituents within microfluidic devices by MS
for the first time. The ChemSitu approach enables the means to continuously sample and chemically characterize
small volumes of liquid directly from a microfluidic device at any point along the construct in near real-time and
without negatively altering the state of the microfluidic system. A multi-disciplinary team of scientists and
engineers with expertise in microfluidics-based cell assays and instrumentation development has been
assembled for successful completion of this project. By providing an accurate, quantitative and predictive model
of and quantitation of physiological interactions, the developed platform promises to establish a new paradigm
for in vitro assessment of the physiological response to therapeutics.
抽象的
目前的体外平台无法很好地预测治疗药物的体内安全性、有效性和药代动力学,
由于测试条件与生理条件相比存在显着差异。因此,药
毒性测试通常使用动物模型进行。然而,动物试验既昂贵又耗时
消耗。此外,对使用动物的道德担忧越来越多地要求
减少/替代动物试验。为了克服这些挑战,生理相关的器官芯片
已开发出检测方法。这些测定模拟药物输送过程中遇到的动态相互作用
并概括了生理流速、血管结构和组织(肝、肺、肾、
等),从而提供改进的定量和预测能力来指导药物开发
准确的毒性分析。然而,当前器官芯片检测中缺乏的关键组件之一是
实时分析测定中指定位置的药物浓度,以确定药物毒性
明确的组织部位。
为了满足这一需求,我们建议将基于微流体的器官芯片系统与片上质量集成
光谱分析测量血管化肝脏结构中的药物浓度。第一阶段的努力
将重点关注微流体装置与新型质谱(MS)检测的集成。该方法使
通过 MS 对微流体装置内的化学成分进行在线时空化学表征
首次。 ChemSitu 方法可实现连续采样和化学表征
沿着结构的任何一点直接从微流体装置中近乎实时地输送少量液体
不会负面改变微流体系统的状态。由科学家和多学科专家组成的团队
具有基于微流体的细胞分析和仪器开发专业知识的工程师
为顺利完成该项目而组装。通过提供准确、定量和预测的模型
生理相互作用的分析和定量,开发的平台有望建立一个新的范例
用于体外评估对治疗的生理反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carrie German其他文献
Carrie German的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carrie German', 18)}}的其他基金
A synergistic in vitro-in silico model of the placental barrier for predicting fetal exposure and toxicity of xenobiotic compounds
胎盘屏障的协同体外计算机模拟模型,用于预测胎儿的外源化合物暴露和毒性
- 批准号:
10698740 - 财政年份:2023
- 资助金额:
$ 31.42万 - 项目类别:
A synergistic in vitro-in silico model of the placental barrier for predicting fetal exposure and toxicity of xenobiotic compounds
胎盘屏障的协同体外计算机模拟模型,用于预测胎儿的外源化合物暴露和毒性
- 批准号:
10698740 - 财政年份:2023
- 资助金额:
$ 31.42万 - 项目类别:
Understanding Mustard Vesicants Distribution and Toxicity in the Eye Using In Vivo and In Silico Models
使用体内和计算机模型了解芥末糜烂剂在眼中的分布和毒性
- 批准号:
10709188 - 财政年份:2023
- 资助金额:
$ 31.42万 - 项目类别:
An in vitro model for screening penetration of ocular drug products
筛选眼科药品渗透的体外模型
- 批准号:
10546892 - 财政年份:2022
- 资助金额:
$ 31.42万 - 项目类别:
Computational Biology (Cobi) Tools as a Framework for Physiologically-Based Pharmacokinetic/Pharmacodynamic Model Extrapolation from Rabbit to Human for Ophthalmic Drug Products
计算生物学 (Cobi) 工具作为基于生理学的药代动力学/药效学模型外推从兔到人眼科药品的框架
- 批准号:
10166845 - 财政年份:2020
- 资助金额:
$ 31.42万 - 项目类别:
Computational Biology (Cobi) Tools as a Framework for Physiologically-Based Pharmacokinetic/Pharmacodynamic Model Extrapolation from Rabbit to Human for Ophthalmic Drug Products
计算生物学 (Cobi) 工具作为基于生理学的药代动力学/药效学模型外推从兔到人眼科药品的框架
- 批准号:
10461730 - 财政年份:2020
- 资助金额:
$ 31.42万 - 项目类别:
Computational Biology (Cobi) Tools as a Framework for Physiologically-Based Pharmacokinetic/Pharmacodynamic Model Extrapolation from Rabbit to Human for Ophthalmic Drug Products
计算生物学 (Cobi) 工具作为基于生理学的药代动力学/药效学模型外推从兔到人眼科药品的框架
- 批准号:
10116143 - 财政年份:2020
- 资助金额:
$ 31.42万 - 项目类别:
相似国自然基金
CHAC1通过调控蛋白谷胱甘肽化修饰促进对乙酰氨基酚诱导急性药物性肝损伤的作用和机制研究
- 批准号:82370597
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
金银花中绿原酸类化合物通过激活Keap1/Nrf2-PPARα通路促进对乙酰氨基酚肝损伤后肝脏再生修复的研究
- 批准号:82304845
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于超小MOF-818构筑的纳米酶复合物催化前药对乙酰氨基酚的氧化及其抗肿瘤机制
- 批准号:32371463
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
IER2通过Hippo信号通路保护对乙酰氨基酚诱导的肝损伤
- 批准号:82373967
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
ENDOG促进对乙酰氨基酚引起肝损伤的作用及机制研究
- 批准号:82370596
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Senescent hepatocytes mediate reprogramming of immune cells in acute liver failure
衰老肝细胞介导急性肝衰竭中免疫细胞的重编程
- 批准号:
10679938 - 财政年份:2023
- 资助金额:
$ 31.42万 - 项目类别:
Assessing fentanyl test strip use accuracy and fentanyl presence in the non-heroin drug supply
评估芬太尼试纸的使用准确性和非海洛因毒品供应中芬太尼的存在
- 批准号:
10668083 - 财政年份:2023
- 资助金额:
$ 31.42万 - 项目类别:
Diverging roles of EGFR and MET in acetaminophen-induced acute liver injury
EGFR 和 MET 在对乙酰氨基酚诱导的急性肝损伤中的不同作用
- 批准号:
10633557 - 财政年份:2023
- 资助金额:
$ 31.42万 - 项目类别:
Neurodevelopmental Effect of Acetaminophen Exposures
对乙酰氨基酚暴露对神经发育的影响
- 批准号:
10736409 - 财政年份:2023
- 资助金额:
$ 31.42万 - 项目类别:
A synergistic in vitro-in silico model of the placental barrier for predicting fetal exposure and toxicity of xenobiotic compounds
胎盘屏障的协同体外计算机模拟模型,用于预测胎儿的外源化合物暴露和毒性
- 批准号:
10698740 - 财政年份:2023
- 资助金额:
$ 31.42万 - 项目类别: