Multiscale approaches to engineering living cells for nanotherapeutic delivery
用于纳米治疗递送的活细胞工程多尺度方法
基本信息
- 批准号:10711015
- 负责人:
- 金额:$ 39.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:Active Biological TransportAddressAreaBiodistributionBiologicalBiological ProductsBiologyBreathingCellsClinicalDiseaseDrug Delivery SystemsDrug KineticsEncapsulatedEngineeringErythrocytesFaceGoalsInflammationMacrophageMethodsModalityModelingOutcomePathologicPharmaceutical PreparationsPharmacodynamicsPropertyPublic HealthResearchSignal TransductionSiteSurfaceSystemTherapeuticTissuescell motilitycellular engineeringdesignimprovedmacromoleculemigrationnanoparticlenanoparticle deliverynanoscalenanotherapeuticnovelparticleprogramssmall moleculetherapeutic nanoparticles
项目摘要
PROJECT SUMMARY
Nanoparticle therapeutics (NTs) that encapsulate drugs in a nanoscale particle has emerged as a primising
therapeutic modality for treating many diseases. NTs encompass a diverse array of nanoparticle types and can
easily incorporate a wide-array of drugs, ranging from small molecules, to macromolecules, to biologics. The
diversity of nanoparticles and encapsulated drugs renders NTs a versatile therapeutic modality that is being
clincally investigated to treat many dieseases in various tissues. Like any other therapetic modality, the
successful application of NTs requires their specific delivery to target sites while avoiding off-target accumulation.
However, owing to their distinct features (e.g. large-size), NTs face unique biological barriers which lead to their
unfavorable pharmacokinetics (PK), biodistribution, and pharmacodynamics (PD) profiles. As such, a pressing
and unaddressed challenge is to better understand the biological barriers for NTs and to develop effective
strategies to guide the precise delivery of NTs to unleash their full therapeutic potential. Toward this end, the
overarching goal of my research program is to identify ideal delivery parameters for NTs and to develop novel
strategeis for precise delivery of NTs. One strategy we are focusing on is to utilize inspirations from the intrinsic
biology, living cells in particular. Indeed, living cells such as circulatory cells can be leveraged as ideal delivery
systems. Circulatory cells can navigate the body, sense pathological signals, and reach diseased tissues via
an active transport mechanism. NTs can be loaded inside or onto the surface of circulatory cells to be
delivered to target sites. My research has made significant strides in this area where we have developed novel
methods to incorporate NTs with diverse living cells and demonstrated that two circulatory cells (erythrocytes
and macrophages) could modulate the PK, biodistribution, and efficacy of NTs. The rapid progression in
advancing cells towards NTs delivery highlights the urgent need for mechanistic studies to i) elucidate how the
interface between living cell carriers and NTs impacts the transport of NTs and migration of carrier cells and ii)
to identify principles for utilizing living cells for precise delivery of NTs. We aim to capitalize our expertise in
nanoparticle design and cell engineering to address this unmet need. Specifically, over the next five years, using
inflammation that occurs in various tissues as a model, we will focus on i) understanding how cell-based carriers
impact the outcomes of NTs delivery, ii) studying how the loading and physicochemical properties of NTs
influence the carrier cells’ migration, and iii) developing multiscale strategies to achieve cell-specific delivery of
NTs. These studies will enable us to establish a set of design rules that govern the delivery efficacy and
interactions of NTs with living cells, which will ultimately improve the capability and broaden the spectrum of NTs
for treating various diseases. Successful realization of our program will not only contribute to understanding the
key features for a NTs to interact with the living cells but also develop a set of principles for rational engineering
living cells to improve the biological outcomes of NTs and other therapeutics.
项目概要
将药物封装在纳米级颗粒中的纳米颗粒疗法(NT)已成为一种启动剂
治疗许多疾病的治疗方式涵盖多种纳米颗粒类型,并且可以。
轻松整合各种药物,从小分子到大分子,再到生物制剂。
纳米颗粒和封装药物的多样性提供了一种正在开发的多功能治疗方式
与任何其他治疗方式一样,经临床研究可治疗多种组织疾病。
NT 的成功应用需要将其特异性递送至靶位点,同时避免脱靶积累。
然而,由于其独特的特征(例如大尺寸),NT面临着独特的生物屏障,这导致它们
不利的药代动力学(PK)、生物分布和药效学(PD)特征因此迫切需要解决。
尚未解决的挑战是更好地了解 NT 的生物屏障并开发有效的
指导 NT 精确递送以充分发挥其治疗潜力的策略。
我的研究计划的总体目标是确定 NT 的理想递送参数并开发新颖的
策略是NT的精确传递,我们关注的一个策略是利用内在的灵感。
生物学,尤其是活细胞,例如循环细胞等活细胞可以用作理想的递送。
循环细胞可以在身体中导航、感知病理信号并通过这些途径到达患病组织。
NT 可以装载到循环细胞内部或表面。
我的研究在这个领域取得了重大进展,我们开发了新颖的技术。
将 NT 与多种活细胞结合的方法,并证明两种循环细胞(红细胞
和巨噬细胞)可以调节 NT 的 PK、生物分布和功效。
推进细胞向 NT 递送强调了迫切需要进行机制研究,以 i) 阐明如何
活细胞载体和 NT 之间的界面影响 NT 的运输和载体细胞的迁移,ii)
确定利用活细胞精确递送 NT 的原理。我们的目标是利用我们在这方面的专业知识。
具体来说,在未来五年内,使用纳米颗粒设计和细胞工程来解决这一未满足的需求。
以各种组织中发生的炎症作为模型,我们将重点关注 i) 了解细胞载体如何
影响 NT 递送的结果,ii) 研究 NT 的负载和理化特性
影响载体细胞的迁移,以及iii)开发多尺度策略以实现细胞特异性递送
这些研究将使我们能够建立一套设计规则来管理交付效率和
NT与活细胞的相互作用,最终将提高NT的能力并拓宽NT的谱系
治疗各种疾病的成功实施不仅有助于理解
NT 与活细胞相互作用的关键特征,同时也制定了一套合理工程的原则
活细胞可改善 NT 和其他疗法的生物学效果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zongmin Zhao其他文献
Zongmin Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zongmin Zhao', 18)}}的其他基金
Combinatorial cytokine-coated macrophages for targeted immunomodulation in acute lung injury
组合细胞因子包被的巨噬细胞用于急性肺损伤的靶向免疫调节
- 批准号:
10648387 - 财政年份:2023
- 资助金额:
$ 39.34万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Exploiting Cancer Metabolism and Drug Efflux with Bystander-Assisted Immunotherapy
通过旁观者辅助免疫疗法利用癌症代谢和药物流出
- 批准号:
10688097 - 财政年份:2022
- 资助金额:
$ 39.34万 - 项目类别:
Elucidating the Mechanistic Basis for Phagotrophy in the Protozoan Trypansoma cruzi
阐明原生动物克氏锥虫吞噬作用的机制基础
- 批准号:
10345248 - 财政年份:2022
- 资助金额:
$ 39.34万 - 项目类别:
Exploiting Cancer Metabolism and Drug Efflux with Bystander-Assisted Immunotherapy
通过旁观者辅助免疫疗法利用癌症代谢和药物流出
- 批准号:
10655088 - 财政年份:2022
- 资助金额:
$ 39.34万 - 项目类别:
Novel insights into the role of the hypothalamic-pituitary-thyroid axis in skeletal muscle adaptive thermogenesis
关于下丘脑-垂体-甲状腺轴在骨骼肌适应性产热中作用的新见解
- 批准号:
9756508 - 财政年份:2019
- 资助金额:
$ 39.34万 - 项目类别:
Effects of cellular lipid droplet allocation on lipid droplet consumption and Drosophila embryogenesis
细胞脂滴分配对脂滴消耗和果蝇胚胎发生的影响
- 批准号:
10200107 - 财政年份:2019
- 资助金额:
$ 39.34万 - 项目类别: