Defining the role of mechanoresponsive adipocyte-to-fibroblast transition in wound fibrosis.
定义机械反应性脂肪细胞向成纤维细胞转变在伤口纤维化中的作用。
基本信息
- 批准号:10654464
- 负责人:
- 金额:$ 34.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:AdipocytesAdipose tissueAdoptedAdultAnatomyCellsCicatrixClinicalCommunicationCutaneousDataDepositionDermalDevelopmentDipeptidyl-Peptidase IVExtracellular MatrixFibroblastsFibrosisFlow CytometryFocal Adhesion Kinase 1GenesGeneticGrowthHistologicHistologyHumanHypertrophic CicatrixImmunohistochemistryIn SituIn VitroInjuryKnockout MiceMachine LearningMechanicsMedicalModelingMolecularMorbidity - disease rateMusMyofibroblastNatural regenerationPathway interactionsPhasePhenotypePiezo 1 ion channelPiezo 2 ion channelPopulationProcessProteomicsReportingRoleSignal PathwaySignal TransductionSkinSocietiesSurfaceSystemTimeTissuesTransgenic OrganismsUnited StatesWorkWound modelsXenograft Modeladipocyte differentiationcell typecostdata integrationepigenomicsfunctional losshealingimage processingin vivomechanical drivemechanical forcemechanical signalmechanotransductionmolecular dynamicsmolecular phenotypemortalitymouse modelmultimodal datamultiple omicsnew therapeutic targetnovelnovel therapeuticspreventprofibrotic fibroblastpsychosocialregenerativeresponseskin fibrosisskin regenerationskin woundskin xenograftsmall moleculesubcutaneoustherapeutic targettranscriptomicstranslational goaltreatment strategywoundwound carewound environmentwound healing
项目摘要
7. Project Summary/Abstract
Adult human skin heals by developing fibrotic scar tissue, which can result in devastating disfigurement, growth
restriction, and permanent functional loss. Despite a plethora of clinical options, no current treatment strategies
successfully prevent or reverse this fibrotic process, and scars and their sequelae cost the United States over
$20 billion every year. Progress towards the development of new therapies has been significantly hindered by a
lack of understanding of the cell populations responsible for scarring and their molecular dynamics. Studies in
recent years have reported that adipocytes in wounds are capable of transitioning into fibroblasts (and vice
versa); however, the extent to which adipocyte-to-fibroblast transition contributes to wound fibrosis (scarring),
and whether this process can be targeted to prevent scarring, remain unknown. In this proposal, we explore for
the first time the role of tissue mechanics in conversion of dermal adipocytes to scarring fibroblasts within the
wound environment. First, employing genetic lineage tracing, we will use histology, immunohistochemistry, and
flow cytometry to study adipocyte-to-fibroblast transition and to interrogate the molecular phenotype of adipocyte
lineage-derived fibroblasts within wounds. Second, we will use a Rainbow mouse model to interrogate clonal
dynamics of adipocyte-to-fibroblast transition in wounds, and will apply an integrated multi-omic analysis, with
single-cell transcriptomic (scRNA-seq) and epigenomic (scATAC-seq), spatial transcriptomic (Visium) and
proteomic (CODEX), and quantitative extracellular matrix (ECM) ultrastructural analyses, in order to robustly
define the molecular drivers and pathways involved in adipocyte-to-fibroblast conversion during scarring. Third,
as our preliminary data strongly support a mechanotransduction mechanism underlying adipocyte-to-fibroblast
transition during wound healing, we will inhibit mechanical signaling in adipocytes using both small molecule and
transgenic approaches in order to block adipocyte-to-fibroblast transition. We will apply a similar multi-omic
analysis to elucidate the molecular dynamics that differentiate wound adipocyte dynamics in the context of intact
versus blocked mechanical signaling and determine how inhibiting mechanically driven adipocyte-to-fibroblast
conversion may reduce fibrosis and yield wound regeneration. Our ultimate translational goal is to develop
therapeutics that target fibrogenic wound cell dynamics to promote regenerative healing. Collectively, the
proposed work will significantly enhance our understanding of the key molecular and cellular determinants of
cutaneous scarring, inform the development of novel anti-scarring therapies, and shed light on the contributions
of adipose tissue to wound fibrosis.
7. 项目总结/摘要
成人皮肤通过形成纤维化疤痕组织来愈合,这可能导致毁灭性的毁容、生长
限制和永久性功能丧失。尽管临床选择众多,但目前尚无治疗策略
成功地阻止或逆转这种纤维化过程,而疤痕及其后遗症使美国付出了超过
每年200亿美元。新疗法的开发进展受到了严重阻碍
缺乏对造成疤痕的细胞群及其分子动力学的了解。研究于
近年来报道伤口中的脂肪细胞能够转变为成纤维细胞(反之亦然)
反之亦然);然而,脂肪细胞向成纤维细胞转变对伤口纤维化(疤痕)的影响程度,
这一过程是否可以有针对性地防止疤痕形成,目前仍不得而知。在本提案中,我们探索
首次揭示组织力学在真皮脂肪细胞向疤痕成纤维细胞转化中的作用
伤口环境。首先,采用遗传谱系追踪,我们将使用组织学、免疫组织化学和
流式细胞术研究脂肪细胞向成纤维细胞的转变并询问脂肪细胞的分子表型
伤口内的谱系衍生的成纤维细胞。其次,我们将使用彩虹小鼠模型来询问克隆
伤口中脂肪细胞向成纤维细胞转变的动力学,并将应用综合多组学分析,
单细胞转录组 (scRNA-seq) 和表观基因组 (scATAC-seq)、空间转录组 (Visium) 和
蛋白质组学 (CODEX) 和定量细胞外基质 (ECM) 超微结构分析,以便可靠地
定义疤痕形成过程中脂肪细胞向成纤维细胞转化所涉及的分子驱动因素和途径。第三,
因为我们的初步数据强烈支持脂肪细胞到成纤维细胞的机械转导机制
在伤口愈合过程中的转变过程中,我们将使用小分子和
转基因方法以阻止脂肪细胞向成纤维细胞的转变。我们将应用类似的多组学
分析以阐明在完整的背景下区分伤口脂肪细胞动力学的分子动力学
与受阻的机械信号传导相比,并确定如何抑制机械驱动的脂肪细胞向成纤维细胞的转变
转化可以减少纤维化并促进伤口再生。我们的最终翻译目标是开发
针对纤维化伤口细胞动力学以促进再生愈合的疗法。总的来说,
拟议的工作将显着增强我们对关键分子和细胞决定因素的理解
皮肤疤痕,为新型抗疤痕疗法的发展提供信息,并阐明贡献
脂肪组织导致伤口纤维化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL T LONGAKER其他文献
MICHAEL T LONGAKER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL T LONGAKER', 18)}}的其他基金
Mechanoresponsive Engrailed-1-negative fibroblasts activate Engrailed-1 to promote fibrosis in wound healing
机械反应性 Engrailed-1 阴性成纤维细胞激活 Engrailed-1 以促进伤口愈合中的纤维化
- 批准号:
10550197 - 财政年份:2020
- 资助金额:
$ 34.25万 - 项目类别:
Irradiated head and neck cancer soft tissue reconstruction by fat transfer.
通过脂肪移植进行辐照头颈癌软组织重建。
- 批准号:
10403603 - 财政年份:2018
- 资助金额:
$ 34.25万 - 项目类别:
Cellular and Mechanical Mechanisms Regulating Mandibular Distraction Osteogenesis
调节下颌牵张成骨的细胞和机械机制
- 批准号:
9889815 - 财政年份:2017
- 资助金额:
$ 34.25万 - 项目类别:
Cellular and Mechanical Mechanisms Regulating Mandibular Distraction Osteogenesis
调节下颌牵张成骨的细胞和机械机制
- 批准号:
9463620 - 财政年份:2017
- 资助金额:
$ 34.25万 - 项目类别:
Cellular and Mechanical Mechanisms Regulating Mandibular Distraction Osteogenesis
调节下颌牵张成骨的细胞和机械机制
- 批准号:
9281376 - 财政年份:2017
- 资助金额:
$ 34.25万 - 项目类别:
相似国自然基金
基于磁共振示踪心外膜脂肪组织CD9+巨噬细胞通过溶酶体-炎症途径调控HFpEF的机制研究
- 批准号:82371930
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
血管外膜脂肪组织来源外泌体通过miR-23b调控谷氨酰胺代谢激活斑块内M1型巨噬细胞极化的机制研究
- 批准号:82370449
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
FTL+ALB+脂肪干细胞与CD36+EBF2-内皮细胞通过交互作用影响脂肪组织衰老的机制研究
- 批准号:82370884
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PCV2通过gC1qR调控脂肪组织巨噬细胞极化抑制脂肪形成的分子机制
- 批准号:32302875
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
乳腺癌细胞分泌的外泌体miR-204通过诱导白色脂肪组织瘦素的产生促进恶液质发生的机制探究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:
相似海外基金
Hypertrophic adipocytes as biophysical mediators of breast cancer progression
肥大脂肪细胞作为乳腺癌进展的生物物理介质
- 批准号:
10751284 - 财政年份:2023
- 资助金额:
$ 34.25万 - 项目类别:
Mechanisms and therapeutic potential of blocking the mitochondrial Mg2+ channel Mrs2 in obesity and NAFLD
阻断线粒体 Mg2 通道 Mrs2 在肥胖和 NAFLD 中的机制和治疗潜力
- 批准号:
10679847 - 财政年份:2023
- 资助金额:
$ 34.25万 - 项目类别:
Elucidating the Transcriptional Brakes on Adipocyte Thermogenesis
阐明脂肪细胞产热的转录制动
- 批准号:
10669395 - 财政年份:2023
- 资助金额:
$ 34.25万 - 项目类别:
Circadian Regulation of In Vitro Differentiated Adipocytes
体外分化脂肪细胞的昼夜节律调节
- 批准号:
10534917 - 财政年份:2022
- 资助金额:
$ 34.25万 - 项目类别:
Modulating Fibro/Adipogenic Precursors to Prevent Adipogenic Replacement of Muscle
调节纤维/脂肪形成前体以防止肌肉的脂肪形成替代
- 批准号:
10408662 - 财政年份:2021
- 资助金额:
$ 34.25万 - 项目类别: