m6A-suite: an informatics pipeline and resource for elucidating roles of m6A epitranscriptome in cancer
m6A-suite:用于阐明 m6A 表观转录组在癌症中的作用的信息学管道和资源
基本信息
- 批准号:10645584
- 负责人:
- 金额:$ 40.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-11 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAlgorithmsAlternative SplicingAreaCancer BiologyCancer cell lineCatalogsCell LineCellsCollaborationsCollectionCommunitiesConsumptionDataData SetDatabasesDetectionDrug TargetingEnsureFeedbackGene ExpressionGene Expression RegulationGrowthHumanHuman Herpesvirus 8In VitroInformaticsKnowledgeLinkMalignant NeoplasmsMammalian CellMapsMediatingMessenger RNAMetabolismMethylationModalityModelingModificationMusNatureNormal CellNormal tissue morphologyOncogenic VirusesOncologistPathway interactionsPatternPerformancePhenotypePhysiological ProcessesPlayProteinsRNARNA DecayRNA SplicingReaderResearchResolutionResourcesRoleSamplingShapesSignal TransductionSiteTestingTherapeuticTissuesTrainingTumor TissueViralWorkalgorithm traininganticancer researchbasebiomarker identificationcancer celldesigndifferential expressionepitranscriptomeimprovedin vivoinformatics toolinsightknowledgebasemRNA DecaymRNA Stabilitymultimodalitynanoporeopen dataopen sourcepredictive toolsprogramssequence learningtherapeutic biomarkertoolusability
项目摘要
Project Summary
N6-methyl-adenosine (m6A) is the most abundant mRNA methylation in mammalian cells. Emerging evidence
has linked m6A with cancer phenotypes in many cancers, spurring a surge of research in studying m6A and
cancer biology. However, dysregulation of m6A effector writers, erasers, and readers and reprogramming of
m6A sites are poorly characterized. How different modes of m6A-regulation of gene expression mediate the
downstream cancer pathways and phenotypes is mostly missing. We have developed several widely used
informatics tools for m6A peak detection, differential m6A analysis, and functional predictions for m6A targets
from MeRIP-seq m6A profiling data. Using these tools, we worked together with cancer biology collaborators to
reveal reprogramed viral and host m6A epitranscriptome in cells infected by the oncogenic virus KSHV and
discovered a cross-talk between m6A writers, erasers, and readers to regulate cancer growth and progression.
However, the fast-moving m6A and cancer research poses many unmet informatics challenges. Among them,
the ability to accurately identify single-base m6A sites and predict key m6A regulatory mechanisms from
profiling data is seriously lacking. Also, a comprehensive database that catalogs and enables queries of where,
what, and how of m6A methylation and function in normal and cancer conditions is highly desirable. To address
challenges, we propose to develop m6A-Suite, an informatics toolbox, pipeline, and resources to facilitate the
mechanistic study of m6A in cancer. A key obstacle to developing tools in m6A-Suite is a lack of large, high-
quality training datasets. Toward this end, we have collected 1,113 human and 680 mouse MeRIP-seq
samples from cancer cell lines, tumors, and normal tissues and identified >4M m6A peaks. In parallel, we have
also collected 194,060 single-base m6A sites in 9 cell lines and 3 tissues. We propose to leverage this data to
construct the highly desirable training datasets. Using these datasets, we will develop efficient and accurate
tools for single-base m6A detection and quantification from MeRIP-seq and nanopore data (Aim 1), enable the
prediction of m6A-mediated RNA decay and splicing (Aim 2), and establish the comprehensive, queriable m6A-
KB knowledgbase to catalog these predictions in an extensive collection of public MeRIP-seq and nanopore
data in cancer and normal cells, and tissues in diverse conditions(Aim 3). We will systematically test and
evaluate these tools within this project and through many established and emerging collaborations inside and
outside the ITCR consortium. We will make the tools and data freely available to the research community and
constantly seek feedback from the collaborators and users for improvement. Given the emerging nature of
m6A and cancer research, the addition of these tools to the ITCR program will positively impact this important,
fast-growing, new area of cancer research.
项目概要
N6-甲基-腺苷 (m6A) 是哺乳动物细胞中最丰富的 mRNA 甲基化。新出现的证据
已将 m6A 与许多癌症的癌症表型联系起来,刺激了 m6A 和
癌症生物学。然而,m6A 效应器写入器、擦除器和读取器的失调以及
m6A 位点的表征很差。 m6A 基因表达调节的不同模式如何介导
下游癌症途径和表型大多缺失。我们开发了多种广泛使用的
用于 m6A 峰值检测、差异 m6A 分析和 m6A 目标功能预测的信息学工具
来自 MeRIP-seq m6A 分析数据。使用这些工具,我们与癌症生物学合作者合作,
揭示了受致癌病毒 KSHV 感染的细胞中重新编程的病毒和宿主 m6A 表观转录组,以及
发现 m6A 写入器、擦除器和读取器之间的串扰来调节癌症的生长和进展。
然而,快速发展的 m6A 和癌症研究带来了许多未满足的信息学挑战。他们之中,
能够准确识别单碱基 m6A 位点并预测关键的 m6A 调控机制
剖析数据严重缺乏。此外,还有一个综合数据库,可以对位置进行编目并进行查询,
m6A 甲基化及其在正常和癌症条件下的功能是什么以及如何变化是非常值得关注的。致地址
挑战,我们建议开发 m6A-Suite,一个信息学工具箱、管道和资源,以促进
m6A在癌症中的机制研究。在 m6A-Suite 中开发工具的一个主要障碍是缺乏大型、高
质量训练数据集。为此,我们收集了 1,113 份人类和 680 份小鼠 MeRIP-seq
来自癌细胞系、肿瘤和正常组织的样本,并鉴定出 >4M m6A 峰。与此同时,我们有
还收集了 9 个细胞系和 3 个组织中的 194,060 个单碱基 m6A 位点。我们建议利用这些数据
构建非常理想的训练数据集。使用这些数据集,我们将开发高效、准确的
用于从 MeRIP-seq 和纳米孔数据中进行单碱基 m6A 检测和定量的工具(目标 1),使
预测 m6A 介导的 RNA 衰减和剪接(目标 2),并建立全面的、可查询的 m6A-
知识库知识库在广泛的公共 MeRIP-seq 和纳米孔集合中对这些预测进行编目
不同条件下的癌症和正常细胞以及组织的数据(目标 3)。我们将系统地测试和
在该项目中以及通过内部和新兴的许多已建立的和新兴的合作来评估这些工具
ITCR 联盟之外。我们将向研究界免费提供工具和数据,
不断寻求合作者和用户的反馈以进行改进。鉴于新兴的性质
m6A 和癌症研究,将这些工具添加到 ITCR 计划将对这一重要的、
快速发展的癌症研究新领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yufei Huang其他文献
Yufei Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yufei Huang', 18)}}的其他基金
Collaborative Research:Graphical models for characterizing global RNA methylation
合作研究:表征全局 RNA 甲基化的图形模型
- 批准号:
8916526 - 财政年份:2014
- 资助金额:
$ 40.86万 - 项目类别:
Collaborative Research:Graphical models for characterizing global RNA methylation
合作研究:表征全局 RNA 甲基化的图形模型
- 批准号:
8825712 - 财政年份:2014
- 资助金额:
$ 40.86万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Accelerating Genomic Data Sharing and Collaborative Research with Privacy Protection
通过隐私保护加速基因组数据共享和协作研究
- 批准号:
10735407 - 财政年份:2023
- 资助金额:
$ 40.86万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 40.86万 - 项目类别:
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
- 批准号:
10725500 - 财政年份:2023
- 资助金额:
$ 40.86万 - 项目类别:
Hybrid Model-Based and Data-Driven Frameworks for High-Resolution Tomographic Imaging
基于混合模型和数据驱动的高分辨率断层成像框架
- 批准号:
10714540 - 财政年份:2023
- 资助金额:
$ 40.86万 - 项目类别:
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
- 批准号:
10736293 - 财政年份:2023
- 资助金额:
$ 40.86万 - 项目类别: