Collaborative Research:Graphical models for characterizing global RNA methylation

合作研究:表征全局 RNA 甲基化的图形模型

基本信息

  • 批准号:
    8825712
  • 负责人:
  • 金额:
    $ 36.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): RNA methylation is beginning to emerge as an universal epigenetic mark that may play a critical role in gene regulation. However, technologies aimed at identifying and characterizing transcriptome-wide RNA methylation (methyltranscriptome) are still at their early stages. This is largely because unlike DNA methylation, RNA methylation has to take into consideration transcript abundance, variations in gene expression levels, mRNA degradation, and most importantly positional bias caused by transcript isoforms. Furthermore, differences in RNA methylation in two different cellular contexts (e.g. normal vs stress) or different disease states (e.g. benign vs. cancer) pose yet another computational challenge for characterizing methyltranscriptome. The overall goal of this proposal is to develop, for the first time, computational graphical models to enable 1) accurate and reproducible detection of global mRNA methylations, and 2) context-specific differential RNA methylations in normal and disease states. To achieve these goals, we propose three specific aims: in Aim 1, we will develop graphical models for detecting mRNA methylation that accounts for biological variations and read biases. We will also develop graphical model for detecting splicing-specific methylation sites. In Aim 2, we will develop graphical models for detecting context-specific differential methylation. In Aim 3, we will characterize and experimentally validate the transcriptome-wide, cell type-specific m5C and m6A methylation in normal and disease states. Successful completion of these aims will not only create a collection of comprehensive tools that enable the identification of global and context-specific mRNA methylations, but will also shed lights on the role of mRNA methylation in regulating gene expression, splicing, RNA editing, and RNA stability. This project leverages our expertise in epigenetics, computational modeling, high performance computing, bioinformatics and high throughput sequencing to add a new dimension to the emerging field of RNA methylaton and greatly contribute to the advances of computational modeling and learning.
描述(由申请人提供):RNA 甲基化开始作为一种通用表观遗传标记出现,可能在基因调控中发挥关键作用。然而,旨在识别和表征全转录组 RNA 甲基化(甲基转录组)的技术仍处于早期阶段。这主要是因为与 DNA 甲基化不同,RNA 甲基化必须考虑转录本丰度、基因表达水平的变化、mRNA 降解,以及最重要的是由转录本亚型引起的位置偏差。此外,两种不同细胞环境(例如正常与应激)或不同疾病状态(例如良性与癌症)中 RNA 甲基化的差异对表征甲基转录组提出了另一个计算挑战。该提案的总体目标是首次开发计算图形模型,以实现 1) 准确且可重复的全局 mRNA 甲基化检测,以及 2) 正常和疾病状态下特定背景的差异 RNA 甲基化。为了实现这些目标,我们提出了三个具体目标:在目标 1 中,我们将开发用于检测 mRNA 甲基化的图形模型,以解释生物变异和读取偏差。我们还将开发用于检测剪接特异性甲基化位点的图形模型。在目标 2 中,我们将开发用于检测上下文特异性差异甲基化的图形模型。在目标 3 中,我们将表征并通过实验验证正常和疾病状态下转录组范围内的细胞类型特异性 m5C 和 m6A 甲基化。成功完成这些目标不仅将创建一系列综合工具,能够识别全局和特定背景的 mRNA 甲基化,而且还将阐明 mRNA 甲基化在调节基因表达、剪接、RNA 编辑和 RNA 中的作用。稳定。该项目利用我们在表观遗传学、计算建模、高性能计算、生物信息学和高通量测序方面的专业知识,为新兴的RNA甲基化领域增添了新的维度,并为计算建模和学习的进步做出了巨大贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yufei Huang其他文献

Yufei Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yufei Huang', 18)}}的其他基金

m6A-suite: an informatics pipeline and resource for elucidating roles of m6A epitranscriptome in cancer
m6A-suite:用于阐明 m6A 表观转录组在癌症中的作用的信息学管道和资源
  • 批准号:
    10645584
  • 财政年份:
    2023
  • 资助金额:
    $ 36.98万
  • 项目类别:
Collaborative Research:Graphical models for characterizing global RNA methylation
合作研究:表征全局 RNA 甲基化的图形模型
  • 批准号:
    8916526
  • 财政年份:
    2014
  • 资助金额:
    $ 36.98万
  • 项目类别:

相似国自然基金

本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Artificial Intelligence powered virtual digital twins to construct and validate AI automated tools for safer MR-guided adaptive RT of abdominal cancers
人工智能支持虚拟数字双胞胎来构建和验证人工智能自动化工具,以实现更安全的 MR 引导的腹部癌症自适应放疗
  • 批准号:
    10736347
  • 财政年份:
    2023
  • 资助金额:
    $ 36.98万
  • 项目类别:
A Multilevel intervention to address health disparities in lung cancer screening
解决肺癌筛查健康差异的多层次干预
  • 批准号:
    10746896
  • 财政年份:
    2023
  • 资助金额:
    $ 36.98万
  • 项目类别:
Center for the Promotion of Cancer Health Equity (CePCHE)
癌症健康公平促进中心 (CePCHE)
  • 批准号:
    10557579
  • 财政年份:
    2023
  • 资助金额:
    $ 36.98万
  • 项目类别:
Development of a rapid, scalable, and deployable point-of-care blood volume diagnostic for monitoring postpartum and trauma-related hemorrhage
开发快速、可扩展且可部署的护理点血容量诊断,用于监测产后和创伤相关出血
  • 批准号:
    10603819
  • 财政年份:
    2023
  • 资助金额:
    $ 36.98万
  • 项目类别:
Targeting RHNO1 in Ovarian Cancer
靶向 RHNO1 治疗卵巢癌
  • 批准号:
    10648755
  • 财政年份:
    2023
  • 资助金额:
    $ 36.98万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了