Navigation tools for Image Guided Minimally invasive Therapies

图像引导微创治疗的导航工具

基本信息

  • 批准号:
    7733647
  • 负责人:
  • 金额:
    $ 2.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

Research in the Interventional Radiology (IR) lab is motivated by the fact that image guidance and minimally invasive approaches have revolutionized the management of many common diseases. However, diagnosis and therapy remain distinctly separated from each other in both time and space. We believe that this gap between diagnosis and therapy can be narrowed by minimally invasive image guided therapies and with the application of novel guidance technologies and engineered vectors. All research efforts in the IR lab are developed with a clear translational route to the clinic and address areas of urgent clinical need. The IR labs research program is separated into three main areas: electromagnetic (EM) and optical tracking and robotics, drug + device combinations, novel methods of augmentation of ablative energies (RFA or HIFU). The diversity of these projects requires an interdisciplinary team of researchers and takes full advantage of the interdisciplinary resources found within the Clinical Center and the Intramural Research Program of the National Institutes of Health. We believe that combining the imaging tools inherent to interventional radiology with pharmaceuticals and medical devices can make a significant contribution to the future treatment of both localized and systemic diseases, with an emphasis upon cancer therapeutics. Principal projects are: 1) Smart biopsy, 2) OR of the future and, 3) Drugs + devices. Smart biopsy relies upon precise electromagnetic tracking to target tissue to correlate sample with imaging parameters. OR of the future is a broad translational project that integrates a variety of technologies for navigation, automation, and visualization of medical procedures. Sub-projects within the Drug + Device model include: 1) Temperature sensitive liposomes combined with radiofrequency ablation (RFA) or high intensity focused ultrasound (HIFU), 2) Radiofrequency ablation combined with antiangiogenic therapy, and 3) Development of image-able drug eluting beads (DEB) for transcatheter arterial chemoembolization (TACE). The clinical treatment of solid tumors could be improved by controlling the pharmacologic properties of anticancer therapeutics to deliver a greater dose to the tumor; with conventional drugs, this dose is typically limited by toxic side effects in normal tissues. Therefore, the efficacy of current anticancer treatments may be improved with advances in drug delivery technologies that have received increased attention in recent years. The goal of drug delivery in the treatment of cancer is to increase the concentration of a therapeutic agent in the tumor while limiting systemic exposure and subsequent normal tissue toxicity. The combination of drug delivery technologies with image guided interventions represents a rich field with great translational potential and the ability to bridge the gap between diagnosis and therapy. Diagnosis and therapy remain distinctly separated from each other in time and space. The gap between diagnosis and therapy can be closed by minimally invasive image guided therapies. Real-time, intra-procedural tools will blend diagnosis and therapy into a dynamic, iterative process with improved outcomes. The redefining of surgical-like procedures will be fueled by multi-modality imaging, navigation, visualization, robotics, and automated precision tools. These enabling technologies have not yet been optimally applied to existing clinical problems, especially in minimally-invasive image guided therapies. This presents an opportunity to integrate these technologies into the clinical setting in a validated and cost-effective manner, and to study the impact prior to broad implementation. Image guidance and multimodality navigation will fuel a small revolution in procedural medicine, which presents unprecedented opportunity and challenge. Image guidance and minimally invasive approaches have revolutionized the management of many common diseases. The miniaturization of surgical interventions has seen the broad adoption of needle or catheter-based procedures such as tumor embolization, brain aneurysm coiling, aortic stent grafting, uterine fibroid embolization, atherosclerosis stenting and angioplasty, and tumor thermal ablation with radiofrequency. As procedures are becoming less and less invasive, they are more and more targeted and guided by imaging and spatial information. The ability to navigate a medical device to a target based upon multiple windows or multiple modalities should have tremendous advantages in certain settings. The combination of functional and morphologic (metabolic and anatomic) information on the same coordinate system is empowering. With multiple public and private partners, we have developed a multimodality interventional radiology suite that uses a CT coordinate frame to co-register different devices including pre-procedural images, intra-procedural ultrasound, gamma scintigraphy, CT, rotational fluoroscopy, robotics, electromagnetic tracking and therapeutic ultrasound, microwave, radiofrequency, etc. to allow the best combinations of techniques and guidance methods tailored to the particular patients needs. Combining imaging modalities can take advantage of each modality's strength. Real-time feedback and temporal resolution of ultrasound can be combined with the functional and metabolic data from PET and the spatial resolution of MR or CT, all on one seamless platform for treatment planning, targeting, procedural navigation, monitoring, and verification of treatment.
介入放射学(IR)实验室中的研究是由于图像指导和微创方法彻底改变了许多常见疾病的管理。 但是,在时间和空间中,诊断和治疗在彼此之间保持明显分离。 我们认为,诊断和治疗之间的这种差距可以通过微创图像指导疗法以及新颖的指导技术和工程载体的应用来缩小。 IR实验室中的所有研究工作均以通往诊所的清晰转换途径开发,并解决紧急临床需求的领域。 IR实验室研究计划分为三个主要领域:电磁(EM)和光学跟踪和机器人技术,药物 +设备组合,增强消融能量的新方法(RFA或HIFU)。 这些项目的多样性需要一个跨学科的研究人员团队,并充分利用了临床中心内发现的跨学科资源以及美国国立卫生研究院的壁内研究计划。 我们认为,将介入放射学固有的成像工具与药品和医疗设备相结合可以为对局部疾病和全身性疾病的未来治疗做出重大贡献,并重点是癌症治疗剂。 主要项目是:1)智能活检,2)或未来以及3)药物 +设备。智能活检依靠精确的电磁跟踪来靶组织将样品与成像参数相关联。或未来是一个广泛的转化项目,该项目集成了各种用于导航,自动化和可视化医疗程序的技术。 Sub-projects within the Drug + Device model include: 1) Temperature sensitive liposomes combined with radiofrequency ablation (RFA) or high intensity focused ultrasound (HIFU), 2) Radiofrequency ablation combined with antiangiogenic therapy, and 3) Development of image-able drug eluting beads (DEB) for transcatheter arterial chemoembolization (TACE).可以通过控制抗癌治疗剂的药理特性来改善实体瘤的临床治疗,从而为肿瘤提供更大的剂量。使用常规药物,这种剂量通常受正常组织中有毒副作用的限制。 因此,随着药物输送技术的进步,当前抗癌治疗的功效可能会提高,这些技术近年来受到了越来越多的关注。 癌症治疗药物的目的是增加肿瘤中治疗剂的浓度,同时限制全身暴露和随后的正常组织毒性。 药物输送技术与图像指导的干预措施的结合代表了一个丰富的领域,具有巨大的翻译潜力以及弥合诊断和治疗之间差距的能力。 诊断和治疗在时间和空间上仍然明显地彼此分离。诊断和治疗之间的差距可以通过微创图像指导疗法来缩小。实时的,手术内工具将诊断和治疗融合到动态的迭代过程中,并改善预后。多模式成像,导航,可视化,机器人技术和自动化精度工具的重新定义将促进类似外科手术的过程。这些促成技术尚未最佳地应用于现有的临床问题,尤其是在微创图像指导疗法中。这为将这些技术集成到临床环境中以经过验证且具有成本效益的方式,并在广泛实施之前研究影响。 图像指导和多模式导航将推动程序医学的一场小革命,这给出了前所未有的机会和挑战。图像指导和微创方法彻底改变了许多常见疾病的管理。手术干预措施的微型化已经看到了针或基于导管的程序,例如肿瘤栓塞,脑动脉瘤围绕,主动脉支架支架移植,子宫肌瘤栓塞,动脉粥样硬化置置和血管置换术以及血管性置换术以及具有放射性射流的肿瘤热水液。 随着程序变得越来越少,它们越来越有针对性的成像和空间信息来指导和指导。根据多个窗口或多种模式将医疗设备导航到目标的能力在某些设置中具有巨大的优势。在同一坐标系上的功能和形态学(代谢和解剖学)信息的组合正在增强。 With multiple public and private partners, we have developed a multimodality interventional radiology suite that uses a CT coordinate frame to co-register different devices including pre-procedural images, intra-procedural ultrasound, gamma scintigraphy, CT, rotational fluoroscopy, robotics, electromagnetic tracking and therapeutic ultrasound, microwave, radiofrequency, etc. to allow the best combinations of针对特定患者需求的技术和指导方法。结合成像方式可以利用每种方式的力量。超声的实时反馈和时间分辨率可以与PET的功能和代谢数据以及MR或CT的空间分辨率结合使用,所有这些都可以在一个无缝平台上用于治疗计划,靶向计划,程序性导航,监测和治疗验证。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(5)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bradford Wood其他文献

Bradford Wood的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bradford Wood', 18)}}的其他基金

Core Research Services for Molecular Imaging and Imaging Sciences
分子成像和成像科学的核心研究服务
  • 批准号:
    7733649
  • 财政年份:
  • 资助金额:
    $ 2.5万
  • 项目类别:
Interventional Oncology
介入肿瘤学
  • 批准号:
    10022065
  • 财政年份:
  • 资助金额:
    $ 2.5万
  • 项目类别:
Navigation Tools for Image Guided Minimally invasive Therapies
图像引导微创治疗的导航工具
  • 批准号:
    10691768
  • 财政年份:
  • 资助金额:
    $ 2.5万
  • 项目类别:
Navigation tools for Image Guided Minimally invasive Therapies
图像引导微创治疗的导航工具
  • 批准号:
    10262633
  • 财政年份:
  • 资助金额:
    $ 2.5万
  • 项目类别:
Bench to Bedside: Non-invasive Treatment of Tumors in Children
从实验室到临床:儿童肿瘤的无创治疗
  • 批准号:
    10262659
  • 财政年份:
  • 资助金额:
    $ 2.5万
  • 项目类别:
Image Guided Focused Ultrasound For Drug Delivery and Tissue Ablation
用于药物输送和组织消融的图像引导聚焦超声
  • 批准号:
    10920175
  • 财政年份:
  • 资助金额:
    $ 2.5万
  • 项目类别:
Navigation tools for Image Guided Minimally invasive Therapies
图像引导微创治疗的导航工具
  • 批准号:
    8952855
  • 财政年份:
  • 资助金额:
    $ 2.5万
  • 项目类别:
Interventional Oncology
介入肿瘤学
  • 批准号:
    10691770
  • 财政年份:
  • 资助金额:
    $ 2.5万
  • 项目类别:
Optical and electromagnetic tracking guidance for hepatic interventions
肝脏干预的光学和电磁跟踪指导
  • 批准号:
    10691780
  • 财政年份:
  • 资助金额:
    $ 2.5万
  • 项目类别:
Interventional Oncology
介入肿瘤学
  • 批准号:
    10920176
  • 财政年份:
  • 资助金额:
    $ 2.5万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Soft robotic sensor arrays for fast and efficient mapping of cardiac arrhythmias.
软机器人传感器阵列可快速有效地绘制心律失常图。
  • 批准号:
    10760164
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
Development of an endometrial ablation drug-device combination to treat heavy menstrual bleeding
开发子宫内膜消融药物装置组合来治疗月经出血
  • 批准号:
    10759501
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
Liquid biopsy and radiomics for liver cancer surveillance
用于肝癌监测的液体活检和放射组学
  • 批准号:
    10736720
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
Developing microwave epiphysiodesis to correct limb length discrepancies
开发微波骨骺固定术以纠正肢体长度差异
  • 批准号:
    10804031
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
RepurPosed AntiretrOviraL ThErapieS to EliminAte Cervical Cancer (POLESA Trial)
重新利用抗逆转录病毒疗法来消除宫颈癌(POLESA 试验)
  • 批准号:
    10738121
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了