Soft robotic sensor arrays for fast and efficient mapping of cardiac arrhythmias.
软机器人传感器阵列可快速有效地绘制心律失常图。
基本信息
- 批准号:10760164
- 负责人:
- 金额:$ 29.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAblationAddressAdoptionAffectAnatomyApicalArrhythmiaAtrial FibrillationBlood flowCardiacCardiac Electrophysiologic TechniquesCardiac ablationCathetersCessation of lifeComplexDevelopmentDevicesDiagnosisElasticityElectrodesElectronicsElectrophysiology (science)FluoroscopyFutureGoalsHeartHospital AdministratorsHospitalsInterviewLasersLeadLeftMapsMarketingMechanicsMedicalMedical TechnologyMethodsMitral ValveModelingMyocardial IschemiaPainPathway interactionsPatient-Focused OutcomesPatientsPerformancePharmacologic SubstancePhasePhysiologicalPolychlorinated BiphenylsPolymersPolyurethanesPopulationProceduresPropertyPuncture procedureRiskRoboticsSignal TransductionSourceSpecialistSpeedSystemTachyarrhythmiasTechnologyThinnessTimeTissuesVentricularVentricular ArrhythmiaVentricular FibrillationVentricular FunctionVentricular Tachycardiacostdesigneffective therapyelectronic sensorfabricationflexibilityimprovedin vivoinnovationinnovative technologiesmanufacturematerials scienceminimally invasivenew technologynovelnovel therapeutic interventionnovel therapeuticsporcine modelpreservationsensorsudden cardiac deathtool
项目摘要
Abstract -
Conform Medical is applying materials science, soft robotics, and stretchable electronics to revolutionize the
mapping and ablation of the aberrant electrical signals underlying arrythmias, starting with ventricular tachycardia
(VT), then expanding to other types of cardiac arrythmia such as atrial fibrillation (AFib).
Cardiac electrophysiology specialists at hospitals and cardiac centers are commonly pained by the lack of tools
to efficiently map ventricular foci with enough speed to diagnose VT. This wide, complex tachyarrhythmia is
usually caused by ischemic heart disease, and VT, along with ventricular fibrillation (VF), are responsible for
75% of the 450,000 sudden cardiac deaths that occur yearly in the U.S. Electrophysiological mapping is critical
for VT management, especially for patients for whom VT cannot be well managed by pharmaceuticals alone. In
these cases, treatment comprises a procedure in which VT is induced and a minimally invasive electrode catheter
is used to map cardiac electrical signals and determine the source of the aberrant electrical pathways associated
with the VT. Keeping these patients in a state of induced arrythmia is only safe for a short period of time, often
just minutes. However, current mapping catheters are not able to acquire a sufficiently detailed activation map
of the ventricle in such a short time. These limitations lead to suboptimal results, with nearly 90% of VT patients
deemed ‘unmappable’.
Conform Medical addresses these critical needs with a novel device composed of soft robotic and stretchable
electronic technology, which will enable fast and accurate cardiac mapping of ventricular foci. The device’s soft
robotic sensor array (SRSA) uniformly conforms 80 flexible sensors to the left ventricular tissue by hydraulically
actuating an elastic thin-walled polymer in the form of a traditional basket mapping catheter. The soft robotic
basket is integrated with a stretchable sensing array formed from low-cost, scalable flex-PCBs, and undergoes
a proprietary laser-based processing method to render them highly stretchable. This innovative approach
overcomes the main challenges in the development of a whole chamber basket catheter for cardiac mapping,
namely scalable fabrication, integration, and conformability.
The goal of this Phase I project is to de-risk the use of the technology in ventricles by optimizing delivery in 3D
printed models that recapitulate the required catheter trackability and anatomic features/functions, validating its
performance in vivo, and demonstrating compatibility with an open, commercial cardiac mapping system. The
specific aims for this project are: 1) Optimize the catheter delivery system in a 3D printed heart model; 2)
Demonstrate the functionality of the device in vivo in porcine models; and 3) Integrate the device with a
commercial cardiac mapping system to determine accuracy of spatial mapping and validate the quality of
electrical readings. This innovative technology will offer an answer the growing burden of ventricular arrhythmias,
which calls for novel and effective therapies, and can also be applied to AFib, and other arrythmias.
抽象的 -
符合医学正在应用材料科学,软机器人技术和可拉伸电子设备来彻底改变
从心室心动过速开始
(vt),然后扩展到其他类型的心脏雅利氏症,例如房颤(AFIB)。
由于缺乏工具,医院和心脏中心的心脏电生理学专家通常会痛苦
有效地以足够速度诊断VT绘制心室灶。这种宽阔,复杂的心律失常是
通常是由缺血性心脏病引起的,VT以及心室纤颤(VF)是由缺血性心脏病引起的。
在美国电生理映射中每年发生的450,000次心脏死亡中,有75%至关重要
对于VT管理,尤其是对于不能仅由药物管理VT的患者。
这些情况,处理包括诱导VT和微创电极导管的过程
用于绘制心脏电信号并确定相关的异常电路的来源
与VT。将这些患者处于诱发的雅利氏症状态仅在短时间内安全,通常
仅几分钟。但是,当前的映射导管无法获得足够详细的激活图
在这么短的时间内进行通风。这些局限性导致次优结果,近90%的VT患者
被认为是“不可能的”。
通过一种由软机器人和可拉伸组成的新型设备来解决这些关键需求
电子技术将使心室灶的快速准确心脏映射。设备柔软
机器人传感器阵列(SRSA)均匀地将80个柔性传感器符合到左心室组织,并通过水力发电构成
以传统的篮子映射导管的形式驱动弹性薄壁聚合物。软机器人
篮子与低成本,可伸缩的Flex-PCB形成的可拉伸感应阵列集成在一起,并经历
一种基于专有激光的处理方法,可使它们高度拉伸。这种创新的方法
克服了整个室内篮导管开发用于心脏映射的主要挑战,
即可扩展的制造,集成和合规性。
该阶段I项目的目标是通过优化3D的交付来脱离心室中的技术
概括所需导管的跟踪性和解剖功能/功能的印刷模型,以验证其
在体内性能,并证明与开放的商业心脏映射系统的兼容性。这
该项目的具体目的是:1)在3D打印心脏模型中优化导管递送系统; 2)
演示猪模型中体内设备的功能; 3)将设备与
商业心脏地图系统以确定空间映射的准确性并验证质量
电气读数。这种创新的技术将为室性心律不齐的日益燃烧提供答案,
这需要新颖有效的疗法,也可以应用于AFIB和其他雅利亚宫。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simon Dunham其他文献
Simon Dunham的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simon Dunham', 18)}}的其他基金
Prototype development and validation of soft robotic sensor arrays for mapping cardiac arrhythmia
用于绘制心律失常的软机器人传感器阵列的原型开发和验证
- 批准号:
10722857 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Prototype development and validation of soft robotic sensor arrays for mapping cardiac arrhythmia
用于绘制心律失常的软机器人传感器阵列的原型开发和验证
- 批准号:
10378724 - 财政年份:2021
- 资助金额:
$ 29.99万 - 项目类别:
Patient-Specific Coronary Hemodynamics by 3D Printing
通过 3D 打印进行患者特定的冠状动脉血流动力学
- 批准号:
10386845 - 财政年份:2013
- 资助金额:
$ 29.99万 - 项目类别:
Patient-Specific Coronary Hemodynamics by 3D Printing
通过 3D 打印进行患者特定的冠状动脉血流动力学
- 批准号:
9926910 - 财政年份:2013
- 资助金额:
$ 29.99万 - 项目类别:
相似国自然基金
玛纳斯河流域上游吸收性气溶胶来源及其对积雪消融的影响研究
- 批准号:42307523
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向肝癌射频消融的智能建模与快速动力学分析方法研究及其临床验证
- 批准号:62372469
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
IRF9调控CD8+T细胞介导微波消融联合TIGIT单抗协同增效抗肿瘤的作用机制
- 批准号:82373219
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
建立可诱导细胞消融系统揭示成纤维细胞在墨西哥钝口螈肢体发育及再生中的作用
- 批准号:32300701
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肿瘤源PPIA介导结直肠癌肝转移射频消融术残瘤化疗抵抗的机制研究
- 批准号:82302332
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Low-Cost, Single-Use Trans-Nasal Cryotherapy Device for Low-Resource Settings
适用于资源匮乏环境的低成本、一次性经鼻冷冻治疗设备
- 批准号:
10761295 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Prototype development and validation of soft robotic sensor arrays for mapping cardiac arrhythmia
用于绘制心律失常的软机器人传感器阵列的原型开发和验证
- 批准号:
10722857 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Development of a 3D neurovascular unit for in vitro modeling of subarachnoid hemorrhage and screening therapies
开发用于蛛网膜下腔出血体外建模和筛选治疗的 3D 神经血管单元
- 批准号:
10722387 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Development of Ultrasound Imaging Phantoms Appropriate for Quantification of Muscle Fascicle Architecture and Mechanical Properties
开发适合量化肌肉束结构和机械性能的超声成像模型
- 批准号:
10252224 - 财政年份:2021
- 资助金额:
$ 29.99万 - 项目类别: