Ex Vivo Generation of Functional Kidney Tissues for Transplantation
用于移植的功能性肾组织的体外生成
基本信息
- 批准号:10414819
- 负责人:
- 金额:$ 79.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAffectBiomanufacturingBiomedical EngineeringBlood VesselsChronic Kidney FailureCoculture TechniquesComplexDevelopmental BiologyDevicesDialysis procedureDisease modelDistalDrainage procedureDuct (organ) structureDuctal Epithelial CellElectrolytesEnd stage renal failureEngineeringEpithelialExhibitsExtracellular MatrixFiltrationFoundationsGenerationsGoalsHeterogeneityHomeostasisHumanIn VitroIndividualKidneyKidney TransplantationLeadLiquid substanceMethodsMicropunctureModelingMorbidity - disease rateNephronsNutrientOrganOrgan DonorOrgan TransplantationOrganogenesisOrganoidsOutputOxygenPatientsPersonsPhysiologicalPrintingProductionProtocols documentationRenal Replacement TherapyRenal TissueRenal functionResearchStructureSystemTechnologyTherapeuticTherapeutic UsesTissue TransplantationTissuesTransplantationTubular formationUreterValidationVascularizationVenousXenobioticsbioprintingblood filtercapillary beddensitydirected differentiationexperimental studyfluid flowglomerular filtrationglomerular functionhuman pluripotent stem cellhuman stem cellsin vivoinduced pluripotent stem cellmortalityself assemblyshear stresssocietal costsstem cell derived tissuesstem cellssuccesstissue repairurinarywasting
项目摘要
PROJECT SUMMARY
In the U.S. alone, up to 26 million people have chronic kidney disease, over 460,000 people are on dialysis, and
100,000 people await kidney transplants with 3,000 new patients added monthly. Given the growing lack of
transplantable organs, patients typically require renal replacement therapies that themselves lead to substantial
morbidity and mortality. We posit that biomanufactured kidney tissues, and ultimately, organs may offer an
important solution to this growing problem. Indeed, recent protocols in developmental biology are unlocking the
potential for stem cells to undergo differentiation and self-assembly to form “mini-organs”, known as organoids.
Kidney organoids exhibit remarkable tissue microarchitectures with high cellular density and heterogeneity akin
to their in vivo counterparts. To bridge the gap from these kidney organoid building blocks (OBBs) to therapeutic
organs, integrative approaches that combine bottom-up organoid assembly with top-down bioprinting are
needed. While it is difficult, if not impossible, to imagine how either organoids or bioprinting alone would fully
replicate the complex multiscale features required for kidney function – their combination could provide an
enabling foundation for de novo organ manufacturing. To generate 3D functional kidney tissues ex vivo for
potential transplantation, our highly collaborative research team will undertake two primary aims. In Specific Aim
1, we will create kidney organoids enhanced by multilineage induction that display functional differentiation of
nephrons. We will produce iPSC-derived kidney organoids and subject them to fluid flow during their
differentiation and maturation on an adherent extracellular matrix (ECM). Through multilineage induction, we will
also induce collecting duct cells that self-assemble and structurally bridge other tubular nephron segments. We
will evaluate the effects of mimicking kidney organogenesis on kidney organoid structure and function using
microperfusion and micropuncture methods. In Specific Aim 2, we will create 3D functional kidney tissues
composed of these optimized kidney OBBs with embedded macrochannels produced by bioprinting that serve
as both vascular and urinary output conduits. We will first produce a densely cellular, tissue matrix composed of
kidney OBBs that facilitates bioprinting of embedded macrochannels. We will then establish connections
between the printed macrochannels embedded in this OBB-laden matrix and the self-assembled microvascular
and collecting duct networks within individual OBBs. Finally, we will assess the glomerular filtration, tubular
maturation, and primitive urinary production of these 3D kidney tissues. If successful, our proposed project will
provide a foundational advance in kidney organ engineering for potential renal therapeutic applications.
项目概要
仅在美国,就有多达 2600 万人患有慢性肾病,超过 46 万人正在接受透析,并且
由于肾移植日益缺乏,目前有 10 万人等待肾移植,并且每月新增 3,000 名患者。
对于可移植器官,患者通常需要肾脏替代疗法,而肾脏替代疗法本身会导致大量的
我们认为生物制造的肾组织以及最终的器官可能会提供一种治疗方法。
事实上,发育生物学的最新协议正在解开这个日益严重的问题的重要解决方案。
干细胞具有分化和自组装形成“微型器官”(称为类器官)的潜力。
肾脏类器官表现出显着的组织微结构,具有高细胞密度和异质性
弥补这些肾脏类器官构件(OBB)与治疗之间的差距。
器官,将自下而上的类器官组装与自上而下的生物打印相结合的综合方法是
虽然很难(如果不是不可能的话)想象单独使用类器官或生物打印将如何完全实现。
复制肾功能所需的复杂的多尺度特征——它们的组合可以提供
为从头器官制造奠定基础 离体生成 3D 功能性肾组织。
在潜在的移植方面,我们高度合作的研究团队将实现两个主要目标。
1,我们将创建通过多谱系诱导增强的肾脏类器官,显示出功能分化
我们将生产 iPSC 衍生的肾脏类器官,并使其在其过程中处于流体流动状态。
通过多谱系诱导,我们将在贴壁细胞外基质(ECM)上分化和成熟。
还诱导集合管细胞自组装并在结构上桥接其他管状肾单位段。
将评估模仿肾脏器官发生对肾脏类器官结构和功能的影响
在具体目标 2 中,我们将创建 3D 功能性肾组织。
由这些优化的肾脏 OBB 组成,这些 OBB 具有通过生物打印产生的嵌入式大通道,可用于
作为血管和尿液输出导管,我们将首先产生由以下物质组成的致密细胞组织基质。
肾脏 OBB 有助于嵌入式宏通道的生物打印,然后我们将建立连接。
嵌入此 OBB 负载基质中的印刷大通道与自组装微血管之间
最后,我们将评估肾小球滤过、肾小管。
如果成功,我们提出的项目将实现这些 3D 肾组织的成熟和原始尿液生成。
为潜在的肾脏治疗应用提供了肾脏器官工程的基础性进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer A. Lewis其他文献
Stretchable Optomechanical Fiber Sensors for Pressure Determination in Compressive Medical Textiles
用于压缩医用纺织品压力测定的可拉伸光机械光纤传感器
- DOI:
10.1002/adhm.201800293 - 发表时间:
2018-05-29 - 期刊:
- 影响因子:10
- 作者:
Joseph D. S;t;t;Marie Moudio;J. Kenji Clark;James O Hardin;Christian Argenti;M. Carty;Jennifer A. Lewis;M. Kolle - 通讯作者:
M. Kolle
Procédés de génération de tissu humain fonctionnel
开发收益
- DOI:
- 发表时间:
2016-03-03 - 期刊:
- 影响因子:0
- 作者:
Jennifer A. Lewis;Mark A. Skylar;David B. Kolesky;K. A. Homan;Alex Ng;George M. Church - 通讯作者:
George M. Church
National Lung Cancer Screening Utilization Trends in the Veterans Health Administration.
退伍军人健康管理局全国肺癌筛查利用趋势。
- DOI:
10.1093/jncics/pkaa053 - 发表时间:
2020-06-13 - 期刊:
- 影响因子:4.4
- 作者:
Jennifer A. Lewis;Lauren R. Samuels;J. Denton;G. Edwards;M. Matheny;A. Maiga;C. Slatore;E. Grogan;Jane Kim;R. Sherrier;R. Dittus;P. Massion;L. Keohane;S. Nikpay;C. Roumie - 通讯作者:
C. Roumie
Tricalcium Silicate T1 and T2 Polymorphic Investigations: Rietveld Refinement at Various Temperatures Using Synchrotron Powder Diffraction
硅酸三钙 T1 和 T2 多晶型研究:使用同步加速器粉末衍射在不同温度下进行 Rietveld 精修
- DOI:
10.1111/j.1551-2916.2004.01625.x - 发表时间:
2004-09-01 - 期刊:
- 影响因子:3.9
- 作者:
A. Benesi;H. Black;M. Grutzeck;Pearl Kaplan;Bernie O’Hare;Rachel A. Steinle;Jeffrey W. Bullard;R. Flatt;R. Shahsavari;Markus Buehler;Rol;Pellenq;K. Garbev;G. Beuchle;P. Stemmermann;L. Black;M. Bornefeld;E. Bonaccorsi;S. Merlino;Anthony R. Kampf;Vanessa K. Peterson;B. Hunter;A. Ray;V. S. Harutyunyan;E. S. Abovyan;Paulo J. M. Monteiro;V. Mkrtchyan;M. Balyan;A. Aivazyan;G. Kirby;Jennifer A. Lewis;Brunauer Cements Award;Ping YU;R. Kirkpatrick;Brent Poe;Paul McMillan;X. Cong;Stephen Kwan;Judith L. Larosa;N. Isu;S. Teramura;Hideki Ishida;Takeshi Mitsuda;Katsumi Mabushi;Kaori Sasaki - 通讯作者:
Kaori Sasaki
Movement with light: Photoresponsive shape morphing of printed liquid crystal elastomers
光运动:印刷液晶弹性体的光响应形状变形
- DOI:
10.1016/j.matt.2024.01.006 - 发表时间:
2024-02-01 - 期刊:
- 影响因子:18.9
- 作者:
Michael J. Ford;Dominique H. Porcincula;Rodrigo Telles;Julie A. Mancini;Yuchen Wang;Mehedi H. Rizvi;Colin K. Loeb;Bryan D. Moran;Joseph B. Tracy;Jennifer A. Lewis;Shu Yang;Elaine Lee;Caitlyn C. Cook - 通讯作者:
Caitlyn C. Cook
Jennifer A. Lewis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer A. Lewis', 18)}}的其他基金
Ex Vivo Generation of Functional Kidney Tissues for Transplantation
用于移植的功能性肾组织的体外生成
- 批准号:
10645187 - 财政年份:2020
- 资助金额:
$ 79.03万 - 项目类别:
Ex Vivo Generation of Functional Kidney Tissues for Transplantation
用于移植的功能性肾组织的体外生成
- 批准号:
10248544 - 财政年份:2020
- 资助金额:
$ 79.03万 - 项目类别:
Ex Vivo Generation of Functional Kidney Tissues for Transplantation
用于移植的功能性肾组织的体外生成
- 批准号:
10053515 - 财政年份:2020
- 资助金额:
$ 79.03万 - 项目类别:
Vascularized kidney organoids on chip for efficacy and toxicity testing of somatic genome editing
芯片上的血管化肾类器官用于体细胞基因组编辑的功效和毒性测试
- 批准号:
9810880 - 财政年份:2019
- 资助金额:
$ 79.03万 - 项目类别:
Vascularized kidney organoids on chip for efficacy and toxicity testing of somatic genome editing
芯片上的血管化肾类器官用于体细胞基因组编辑的功效和毒性测试
- 批准号:
10335115 - 财政年份:2019
- 资助金额:
$ 79.03万 - 项目类别:
Vascularized kidney organoids on chip for efficacy and toxicity testing of somatic genome editing
芯片上的血管化肾类器官用于体细胞基因组编辑的功效和毒性测试
- 批准号:
10015278 - 财政年份:2019
- 资助金额:
$ 79.03万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 79.03万 - 项目类别:
A Gene-Network Discovery Approach to Structural Brain Disorders
结构性脑疾病的基因网络发现方法
- 批准号:
10734863 - 财政年份:2023
- 资助金额:
$ 79.03万 - 项目类别:
SELENOF is a Novel Tumor Suppressor and a New Target to Overcome Racial Disparity in Breast Cancer.
SELENOF 是一种新型肿瘤抑制剂,也是克服乳腺癌种族差异的新靶点。
- 批准号:
10735662 - 财政年份:2023
- 资助金额:
$ 79.03万 - 项目类别:
Novel Implementation of Microporous Annealed Particle HydroGel for Next-generation Posterior Pharyngeal Wall Augmentation
用于下一代咽后壁增强的微孔退火颗粒水凝胶的新实现
- 批准号:
10727361 - 财政年份:2023
- 资助金额:
$ 79.03万 - 项目类别:
CRISPR-Cas Editing as a Genetic Cure for Autosomal Dominant Polycystic Kidney Disease
CRISPR-Cas 编辑作为常染色体显性多囊肾病的基因治疗
- 批准号:
10822502 - 财政年份:2023
- 资助金额:
$ 79.03万 - 项目类别: