Scaling Volumetric Imaging, Analysis and Science Communication Using Immersive Virtual Reality
使用沉浸式虚拟现实扩展体积成像、分析和科学传播
基本信息
- 批准号:10604786
- 负责人:
- 金额:$ 79.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional4D ImagingAcademiaAccelerationActive LearningAdoptionBRAIN initiativeBiologicalBrainBrain imagingBusinessesClinicalClinical ResearchCloud ComputingCommunicationComputer softwareComputersDataData SetDemocracyDepth PerceptionDevelopmentDigital LibrariesEducational MaterialsEducational process of instructingElectron MicroscopeEnsureEnvironmentGoalsGrantHourImageImage AnalysisIndustryInternetIntuitionKnowledgeLanguageLearningLibrariesLicensingMachine LearningManuscriptsMethodsMicroscopeModelingModernizationMultimediaNarrationNational Institute of Mental HealthNeurosciences ResearchPattern RecognitionPerformancePhasePhilosophyPopulationProcessProductionPublicationsReportingResearchResolutionResourcesRunningSalesScanningScienceScientistSmall Business Innovation Research GrantSound LocalizationStructureStudentsSystemTechniquesTechnologyTestingThree-Dimensional ImageTrainingTraining and Educationauditory processingbaseclinical imagingclinical practicecostdesignextended realityfield studyhuman-in-the-loopimprovedinnovationinsightlarge datasetslarge scale datalearning strategylecturesmachine learning algorithmmachine learning methodmachine learning modelmeetingsnew technologynext generationnovelpeerpre-clinical researchprogramsprototypescientific computingstereoscopicstructural biologysuccesstechnology developmenttoolvirtual realityvirtual reality environment
项目摘要
Over the past 15 years, new microscope technologies and methods for high throughput imaging
have revolutionized structural biology by extending the resolution and scale of datasets in 3
dimensions. The resulting image volumes are more typically hundreds of GB to even tens of TB
and for large volume electron microscope images of brain, can approach PB sizes. These file
sizes pose challenges for image analysis, and communication of a representative set of raw
data and quantification. Large files contain many structures, and require machine learning (ML)
strategies in a context that permits error correction. Scientific communication requires tools for
ready access to raw data, and more efficient methods to communicate the rapidly accumulating
sets of scientific information. The rapidly accumulating digital library also affords a resource for
teaching and training, which is largely untapped.
We propose to leverage virtual reality (VR) to transform each of these challenges, capitalizing
on natural abilities for stereoscopic vision and pattern recognition and, for scientific
communication, teaching and training, auditory processing to process language and localize
sounds. Based upon the tool base and direct volume rendering of large files that we have
established in our VR software, called syGlass, we will first expand modern domain learning and
so-called meta-learning techniques in the ML field to analyze images with few iterations from
object counting to object tracking and tracing (Aim 1). Next, we will capitalize on new
technologies for cloud rendering to significantly mitigate the hardware costs for adoption of
syGlass (Aim 2). Finally, we will provide novel tools to efficiently generate narrated scientific
presentations in VR for use in the lab setting, as manuscript publications, and for production of
educational materials (Aim 3). The complexity of the brain offers a challenging testbed for
teaching and training. In each of these Aims, we will introduce paradigm shifts in the analysis of
the large data volumes, and communication of 3D and 4D data to colleagues and non-experts.
在过去的15年中,新的显微镜技术和高通量成像的方法
通过扩展数据集的分辨率和规模,彻底改变了结构生物学
方面。所得的图像量更常见的是数百GB至数十TB
对于大容量的电子显微镜图像,可以接近PB尺寸。这些文件
尺寸构成图像分析的挑战,以及一组代表性的原始挑战
数据和量化。大文件包含许多结构,需要机器学习(ML)
在允许纠正错误的情况下的策略。科学沟通需要工具
可以访问原始数据,以及更有效地传达迅速累积的方法
一组科学信息。迅速积累的数字图书馆还为
教学和培训,这在很大程度上尚未开发。
我们建议利用虚拟现实(VR)改变这些挑战,利用
关于立体视觉和模式识别的自然能力以及科学
沟通,教学和培训,听觉处理以处理语言和本地化
听起来。根据我们拥有的大型文件的工具库和直接音量渲染
在我们的VR软件(称为Syglass)中建立,我们将首先扩展现代领域学习和
ML字段中所谓的元学习技术,以分析图像很少的迭代图像
对象计算对象跟踪和跟踪(AIM 1)。接下来,我们将利用新的
云渲染的技术可显着减轻采用硬件的成本
Syglass(AIM 2)。最后,我们将提供新颖的工具来有效地生成叙述的科学
VR中的演示文稿用于实验室设置,作为手稿出版物以及生产
教育材料(目标3)。大脑的复杂性提供了一个具有挑战性的测试床
教学和培训。在每个目标中,我们都会在分析中引入范式转变
大数据量以及3D和4D数据与同事和非专家的通信。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gianfranco Doretto其他文献
Gianfranco Doretto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gianfranco Doretto', 18)}}的其他基金
Scaling Volumetric Imaging, Analysis and Science Communication Using Immersive Virtual Reality: Administrative Supplement
使用沉浸式虚拟现实扩展体积成像、分析和科学传播:行政补充
- 批准号:
10887718 - 财政年份:2020
- 资助金额:
$ 79.89万 - 项目类别:
Streamlining Volumetric Imaging, Analysis and Publication Using Immersive Virtual Reality
使用沉浸式虚拟现实简化体积成像、分析和发布
- 批准号:
10011054 - 财政年份:2020
- 资助金额:
$ 79.89万 - 项目类别:
相似国自然基金
融合闪烁光刺激与4D定量OCTA的视网膜功能成像技术与应用研究
- 批准号:62075189
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
复杂背景中行人目标的4D光场视觉感知机制与识别方法研究
- 批准号:61906133
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于高光谱-可见光成像的水稻叶绿素4D表型提取方法研究
- 批准号:31800305
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于结构与动态联合先验的PET心肌灌注直接4D参数成像方法
- 批准号:81871437
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
4D成像技术研究及其在龙门山断裂带介质演化中的应用
- 批准号:41674090
- 批准年份:2016
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
3D and 4D imaging - key skills for the Earth, Environmental & Planetary Sciences
3D 和 4D 成像 - 地球、环境的关键技能
- 批准号:
NE/Y003586/1 - 财政年份:2023
- 资助金额:
$ 79.89万 - 项目类别:
Training Grant
Observation for dynamic process of dental caries by in situ 4D imaging
原位4D成像观察龋齿动态过程
- 批准号:
23K16022 - 财政年份:2023
- 资助金额:
$ 79.89万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Towards Personalized Prosthetic Graft Replacement for Genetically Triggered Thoracic Aortic Aneurysms
针对基因触发的胸主动脉瘤的个性化假体移植
- 批准号:
10753115 - 财政年份:2023
- 资助金额:
$ 79.89万 - 项目类别:
Heart-brain MRI for the evaluation of hemodynamic coupling in aging and Alzheimer's disease
心脑 MRI 用于评估衰老和阿尔茨海默氏病的血流动力学耦合
- 批准号:
10571411 - 财政年份:2023
- 资助金额:
$ 79.89万 - 项目类别:
A Novel Framework for Sensitive and Reliable Early Diagnosis, Topographic Mapping, and Stiffness Classification of Colorectal Cancer Polyps
一种用于结直肠癌息肉敏感且可靠的早期诊断、地形测绘和硬度分类的新框架
- 批准号:
10742476 - 财政年份:2023
- 资助金额:
$ 79.89万 - 项目类别: