Microphysiological Model of Human Cardiac Sympathetic Innervation
人类心脏交感神经支配的微生理模型
基本信息
- 批准号:10636892
- 负责人:
- 金额:$ 71.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAffectAnimal ModelAreaArrhythmiaAutonomic nervous systemBasic ScienceCardiacCardiac MyocytesCardiac OutputCardiomyopathiesCell NucleusCellsCoculture TechniquesDataDesmosomesDevelopmentDiabetes MellitusDisease ProgressionDisease modelDisparityElectrodesElectrophysiology (science)EtiologyEvaluationExhibitsFeedbackGene MutationGenesGeneticGoalsGrowthHeartHeart DiseasesHumanImpairmentIn VitroMeasuresMicroelectrodesMicrofabricationMitotic Cell CycleModelingMolecularMonitorMuscle CellsMyocardial InfarctionNatural regenerationNeonatalNerveNeuronsNeuropathyPathogenesisPathogenicityPatientsPerformancePhenotypePhysiologicalPhysiologyPopulationProcessPropertyRegulationReporterResearchResolutionRodentRoleSpecific qualifier valueStructureStructure of superior cervical ganglionSudden DeathSympathectomySystemTechniquesTestingTherapeuticTissuesTranslational ResearchVentricularVentricular ArrhythmiaWorkarrhythmogenic cardiomyopathycardiac muscle diseasechronotropiccost effectivedevelopmental diseasedisease phenotypedrug testingelectric impedancefallsheart functionheart innervationhuman diseasehuman embryonic stem cellhuman modelin vitro Modelin vivoinduced pluripotent stem cellinduced pluripotent stem cell derived cardiomyocytesinsightmicrophysiology systemmultimodalitynerve supplyneuroregulationnovelnovel therapeuticsoptogeneticspre-clinicalsynaptogenesistargeted treatmenttissue culturetranscriptometranscriptome sequencingtranscriptomics
项目摘要
PROJECT SUMMARY
Goal: We will develop and validate a microphysiological platform of human cardiac sympathetic innervation for
in vitro modeling of the human cardiac sympathetic innervation and apply autonomic neuron specification and
its interaction with a fatal cardiac disease. The heart is heavily innervated by the autonomic nervous system that
consists of both parasympathetic and sympathetic nerves, providing feedback control and regulate overall
cardiac performance. Historically, the development of new therapeutic agents targeting cardiac neuropathies
have utilized animal models, which exhibited various limitations due to the disparity in homeostatic mechanisms
of autonomic nervous systems and the inability to recapitulate accurate human disease phenotypes. In our
proposed work, we will develop a novel compartmentalized 3D microelectrode array (MEA) co-culture platform
to model human sympathetic innervation and address the fundamental questions on sympatho-cardiac
connections, reciprocal regulation, and development of cardiac and autonomic cells. Furthermore, with
arrhythmogenic cardiomyopathy (ACM) patient-derived human induced pluripotent stem cells (hiPSC), we
expect to recapitulate ACM syndromic phenotypes and examine the diseased cardiac sympathetic innervation
on our microphysiological platform, conducive to understanding neuromodulation as well as the neuronal
contribution to heart function and disease. We will leverage state-of-art techniques developed by our team: (1)
high-throughput multimodal 3D microelectrode arrays, (2) single-cell transcriptomes from human autonomic
neurons and cardiac cells for a continuum of molecular changes during their interactions, (3) genetic reporter
systems with isogenic control cells to define specific human autonomic neuron populations and perform high-
resolution analysis of the neuron-cardiac connection, (4) the optogenetic control of neuronal activities on
connected cardiac tissue. Focus/Aim: Our proposed research focuses on developing an in vitro platform to
study neuro-cardiac interactions with hiPSCs. We will develop and optimize a compartmentalized 3D MEA co-
culture platform in multi-well format to monitor electrophysiology properties of cardiomyocytes, sympathetic
neurons and neuro-cardiac junction, followed by evaluation of the platform’s ability to support functional synapse
formation with optogenetic neuronal stimulation (Aim 1). We will also generate the developmental trajectory of
hiPSC-cardiomyocytes connected to hiPSC-sympathetic neurons through single cell transcriptomic analysis, as
well as structural and functional changes in hiPSC-CMs following neuronal stimulations (Aim 2). Furthermore,
we will examine whether the innervation affects cell fate choice (Aim 2). In Aim 3, we will employ ACM patient-
derived hiPSC/hESCs harboring desmosomal gene mutations onto our microphysiological platform and
investigate the role of sympathetic innervation in pathogenic phenotypes presented by ACM, which will be
validated in vivo. The proposed in vitro model of cardiac autonomic innervation could provide broad applications,
including preclinical drug testing and in vitro disease modeling for etiological understanding of cardiac autonomic
cardiomyopathies and neuropathies.
项目概要
目标:我们将开发并验证人类心脏交感神经支配的微生理学平台
人类心脏交感神经支配的体外建模并应用自主神经元规范和
它与致命的心脏病的相互作用。心脏受到自主神经系统的严重支配。
由副交感神经和交感神经组成,提供反馈控制和整体调节
从历史上看,针对心脏神经病变的新治疗药物的开发。
利用动物模型,由于稳态机制的差异,动物模型表现出各种局限性
自主神经系统的缺陷以及无法重现准确的人类疾病表型。
在拟议的工作中,我们将开发一种新型的分区 3D 微电极阵列 (MEA) 共培养平台
模拟人类交感神经支配并解决交感神经的基本问题
此外,心脏和自主细胞的连接、相互调节和发育。
致心律失常性心肌病 (ACM) 患者来源的人诱导多能干细胞 (hiPSC),我们
期望重现 ACM 综合征并检查患病的心脏交感神经支配
在我们的微生理学平台上,有助于理解神经调节以及神经元
我们将利用我们团队开发的最先进的技术对心脏功能和疾病做出贡献:(1)
高通量多模态 3D 微电极阵列,(2) 来自人类自主神经的单细胞转录组
神经元和心肌细胞在相互作用过程中发生连续的分子变化,(3) 遗传报告基因
具有等基因控制细胞的系统来定义特定的人类自主神经元群体并执行高
神经元-心脏连接的分辨率分析,(4)神经元活动的光遗传学控制
焦点/目标:我们提出的研究重点是开发一个体外平台
研究神经心脏与 hiPSC 的相互作用。我们将开发和优化分隔的 3D MEA co-
多孔培养平台,用于监测心肌细胞、交感神经细胞的电生理学特性
神经元和神经心脏连接,然后评估平台支持功能突触的能力
通过光遗传学神经元刺激形成(目标 1)。
通过单细胞转录组分析将 hiPSC 心肌细胞连接到 hiPSC 交感神经元,如
以及神经元刺激后 hiPSC-CM 的结构和功能变化(目标 2)。此外,
我们将检查神经支配是否影响细胞命运选择(目标 2),在目标 3 中,我们将采用 ACM 患者。
将含有桥粒基因突变的 hiPSC/hESC 衍生到我们的微生理平台上,
研究交感神经支配在 ACM 呈现的致病表型中的作用,这将是
所提出的心脏自主神经支配的体外模型可以提供广泛的应用,
包括临床前药物测试和体外疾病模型,以了解心脏自主神经的病因学
心肌病和神经病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deok-Ho Kim其他文献
Deok-Ho Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deok-Ho Kim', 18)}}的其他基金
High-throughput nanoIEA-based Assay for Screening Immune Cell-Vascular Interactions
用于筛选免疫细胞-血管相互作用的基于 nanoIEA 的高通量测定法
- 批准号:
10592897 - 财政年份:2023
- 资助金额:
$ 71.56万 - 项目类别:
Microphysiological Model of Human Cardiac Sympathetic Innervation
人类心脏交感神经支配的微生理模型
- 批准号:
10861445 - 财政年份:2022
- 资助金额:
$ 71.56万 - 项目类别:
Microphysiological Model of Human Cardiac Sympathetic Innervation
人类心脏交感神经支配的微生理模型
- 批准号:
10502626 - 财政年份:2022
- 资助金额:
$ 71.56万 - 项目类别:
A Human iPSC-based 3D Microphysiological System for Modeling Cardiac Dysfunction in Microgravity
基于人体 iPSC 的 3D 微生理系统,用于模拟微重力下的心脏功能障碍
- 批准号:
10632929 - 财政年份:2022
- 资助金额:
$ 71.56万 - 项目类别:
A Human iPSC-based 3D Microphysiological System for Modeling Cardiac Dysfunction in Microgravity
基于人体 iPSC 的 3D 微生理系统,用于模拟微重力下的心脏功能障碍
- 批准号:
10632929 - 财政年份:2022
- 资助金额:
$ 71.56万 - 项目类别:
Microphysiological Model of Human Cardiac Sympathetic Innervation
人类心脏交感神经支配的微生理模型
- 批准号:
10869757 - 财政年份:2022
- 资助金额:
$ 71.56万 - 项目类别:
Transcriptomic Entropy to Quantify Maturation of PSC-Derived Cardiomyocytes
转录组熵量化 PSC 衍生心肌细胞的成熟
- 批准号:
10179233 - 财政年份:2021
- 资助金额:
$ 71.56万 - 项目类别:
Transcriptomic Entropy to Quantify Maturation of PSC-Derived Cardiomyocytes
转录组熵量化 PSC 衍生心肌细胞的成熟
- 批准号:
10378025 - 财政年份:2021
- 资助金额:
$ 71.56万 - 项目类别:
Transcriptomic Entropy to Quantify Maturation of PSC-Derived Cardiomyocytes
转录组熵量化 PSC 衍生心肌细胞的成熟
- 批准号:
10661492 - 财政年份:2021
- 资助金额:
$ 71.56万 - 项目类别:
DISEASE MODELING AND PHENOTYPIC DRUG SCREENING FOR DYSTROPHIC CARDIOMYOPATHY
营养不良性心肌病的疾病建模和表型药物筛选
- 批准号:
10164856 - 财政年份:2020
- 资助金额:
$ 71.56万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 71.56万 - 项目类别:
A Gene-Network Discovery Approach to Structural Brain Disorders
结构性脑疾病的基因网络发现方法
- 批准号:
10734863 - 财政年份:2023
- 资助金额:
$ 71.56万 - 项目类别:
SELENOF is a Novel Tumor Suppressor and a New Target to Overcome Racial Disparity in Breast Cancer.
SELENOF 是一种新型肿瘤抑制剂,也是克服乳腺癌种族差异的新靶点。
- 批准号:
10735662 - 财政年份:2023
- 资助金额:
$ 71.56万 - 项目类别:
Novel Implementation of Microporous Annealed Particle HydroGel for Next-generation Posterior Pharyngeal Wall Augmentation
用于下一代咽后壁增强的微孔退火颗粒水凝胶的新实现
- 批准号:
10727361 - 财政年份:2023
- 资助金额:
$ 71.56万 - 项目类别:
CRISPR-Cas Editing as a Genetic Cure for Autosomal Dominant Polycystic Kidney Disease
CRISPR-Cas 编辑作为常染色体显性多囊肾病的基因治疗
- 批准号:
10822502 - 财政年份:2023
- 资助金额:
$ 71.56万 - 项目类别: