High-throughput nanoIEA-based Assay for Screening Immune Cell-Vascular Interactions
用于筛选免疫细胞-血管相互作用的基于 nanoIEA 的高通量测定法
基本信息
- 批准号:10592897
- 负责人:
- 金额:$ 21.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-19 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdherens JunctionAnimal GeneticsAnimal ModelAnimalsAutoimmune DiseasesBasement membraneBiological AssayBiologyBloodBlood - brain barrier anatomyBlood VesselsCOVID-19CategoriesCell AdhesionCell CommunicationCell-Cell AdhesionCellsCellular MorphologyChronicCoagulation ProcessCoculture TechniquesCommunicable DiseasesComplementDepositionDermalDiseaseDrug ScreeningElectrical ResistanceElectrodesEndothelial CellsEndotheliumEpitheliumExperimental ModelsExtravasationFunctional disorderGene ExpressionGoalsHumanImmuneImmune System DiseasesImmunityImmunologyImpairmentIn VitroInfectionInflammationInflammatoryIntercellular JunctionsInvestigationLesionLungLupusLymphaticMeasurementMeasuresMediatingMethodsModelingNaturePatternPericytesPermeabilityPharmaceutical PreparationsPhenotypePhysiologicalPlayPluripotent Stem CellsProcessRapid screeningReadingRoleScreening procedureSepsisSignal TransductionSiteSkinSystemSystems AnalysisTechnologyTherapeuticTimeVascular DiseasesVascular Permeabilitiescell behaviorcell motilityclinically relevantcytokinedrug candidateelectric impedanceendothelial dysfunctionexperienceglomerular filtrationhigh throughput screeningimprovedin vitro Modelin vivointerstitialknock-downlung microvascular endothelial cellsmigrationnanopatternnovelpathogenpersonalized medicinepolarized cellpreventscreeningtrafficking
项目摘要
PROJECT SUMMARY
Blood vessels play a central role in maintaining host immunity by transporting immune cells to sites of infection.
During the process, blood vessels experience endothelial junction remodeling to control vascular permeability
and immune cell extravasation. Under infection, blood vessels become permeable and allow immune cells to
extravasate and kill pathogens in the interstitium. Once the infection is resolved, permeable vessels become less
permeable and limit the number of interstitial immune cells. However, sometimes in inflammation, the remodeling
is perturbed, resulting in prolonged, hyper-permeable blood vessels. This vascular dysfunction contributes to
immune diseases, such as chronic inflammation, lupus, and autoimmune disease. It is known that endothelial
cell alignment is crucial to maintain intact cell-cell adhesion and promote junction maturation. Despite the
significance of the cell alignment in functional endothelium, currently available high-throughput methods, such
as real-time cell analysis (RTCA) and trans-epithelial/trans-endothelial electrical resistance (TEER) systems with
randomly seeded cells have not successfully measured cell impedance or electrical resistance through the in
vivo-like controlled endothelial cell morphology, alignment, and matured cell-cell junctions. Furthermore, the
current technologies lack pericyte co-culture with endothelial cells. In this proposal, we will develop a high-
throughput, high-content functional screening assay capable of faster drug screening and mechanistic studies
on blood vessel barrier function and immune cell extravasation. To achieve our goals, we will establish a
nanopatterned IEA-based functional assay for high-throughput phenotype screening of pericyte-covered
endothelium. To establish the nanopatterned IEA-based assay, we will determine conditions for junctional
maturation of human dermal and lung microvascular endothelial cells with or without pericytes, focusing on (i)
degree of cell alignment; (ii) expression of adherens junctions, polarization, and basement membrane markers;
(iii) vascular barrier function (Aim 1.1). We will then assess vascular gene expression profiles related to vessel
stabilization and immune cell adhesion. We will next evaluate immune cell extravasation through the endothelium
in the non-inflammatory condition to determine immune cell behaviors in steady-state blood vessels (Aim 1.2).
Next, we will validate the utility of the system for inflammation-induced blood vessel dysfunction. To achieve this
aim, we will examine the endothelial barrier function and immune cell extravasation in five different categories of
inflammatory cytokines and various levels of substrate stiffness considering skin and lung microenvironments
(Aim 2.1). Lastly, we will identify potential targets and drugs to reverse vessel dysfunction by focusing on
abrogation of the cytokine effect and the stiffness effect, separately or in combination (Aim 2.2). In summary, our
system will constitute a significant improvement over existing technologies as it represents a novel high-
throughput screening tool for functionally matured blood endothelium and their interactions with immune cells.
项目概要
血管通过将免疫细胞运送到感染部位,在维持宿主免疫力方面发挥着核心作用。
在此过程中,血管经历内皮连接重塑以控制血管通透性
和免疫细胞外渗。在感染下,血管变得可渗透并允许免疫细胞
外渗并杀死间质中的病原体。一旦感染得到解决,通透性血管就会减少
具有渗透性并限制间质免疫细胞的数量。然而,有时在炎症中,重塑
受到干扰,导致血管延长、渗透性过高。这种血管功能障碍会导致
免疫疾病,例如慢性炎症、狼疮和自身免疫性疾病。据了解,内皮细胞
细胞排列对于维持完整的细胞间粘附和促进连接成熟至关重要。尽管
功能性内皮细胞排列的重要性,目前可用的高通量方法,例如
作为实时细胞分析(RTCA)和跨上皮/跨内皮电阻(TEER)系统
随机接种的细胞尚未成功测量细胞阻抗或电阻
类似体内的受控内皮细胞形态、排列和成熟的细胞-细胞连接。此外,
目前的技术缺乏周细胞与内皮细胞的共培养。在本提案中,我们将开发一个高
高通量、高内涵的功能筛选测定,能够更快地进行药物筛选和机制研究
血管屏障功能和免疫细胞外渗的影响。为了实现我们的目标,我们将建立一个
基于纳米图案 IEA 的功能测定,用于周细胞覆盖的高通量表型筛选
内皮细胞。为了建立基于 IEA 的纳米图案检测,我们将确定连接的条件
有或没有周细胞的人真皮和肺微血管内皮细胞的成熟,重点是(i)
细胞排列程度; (ii) 粘附连接、极化和基底膜标记的表达;
(iii) 血管屏障功能(目标 1.1)。然后我们将评估与血管相关的血管基因表达谱
稳定性和免疫细胞粘附。接下来我们将评估免疫细胞通过内皮的外渗
在非炎症条件下确定稳态血管中的免疫细胞行为(目标 1.2)。
接下来,我们将验证该系统对于炎症引起的血管功能障碍的效用。为了实现这一目标
目的,我们将检查五种不同类别的内皮屏障功能和免疫细胞外渗
考虑到皮肤和肺部微环境,炎症细胞因子和不同水平的基质硬度
(目标 2.1)。最后,我们将重点关注逆转血管功能障碍的潜在靶点和药物
单独或组合消除细胞因子效应和僵硬效应(目标 2.2)。综上所述,我们的
系统将是对现有技术的重大改进,因为它代表了一种新颖的高
用于功能成熟的血液内皮及其与免疫细胞相互作用的通量筛选工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deok-Ho Kim其他文献
Deok-Ho Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deok-Ho Kim', 18)}}的其他基金
Microphysiological Model of Human Cardiac Sympathetic Innervation
人类心脏交感神经支配的微生理模型
- 批准号:
10861445 - 财政年份:2022
- 资助金额:
$ 21.17万 - 项目类别:
Microphysiological Model of Human Cardiac Sympathetic Innervation
人类心脏交感神经支配的微生理模型
- 批准号:
10502626 - 财政年份:2022
- 资助金额:
$ 21.17万 - 项目类别:
A Human iPSC-based 3D Microphysiological System for Modeling Cardiac Dysfunction in Microgravity
基于人体 iPSC 的 3D 微生理系统,用于模拟微重力下的心脏功能障碍
- 批准号:
10632929 - 财政年份:2022
- 资助金额:
$ 21.17万 - 项目类别:
A Human iPSC-based 3D Microphysiological System for Modeling Cardiac Dysfunction in Microgravity
基于人体 iPSC 的 3D 微生理系统,用于模拟微重力下的心脏功能障碍
- 批准号:
10632929 - 财政年份:2022
- 资助金额:
$ 21.17万 - 项目类别:
Microphysiological Model of Human Cardiac Sympathetic Innervation
人类心脏交感神经支配的微生理模型
- 批准号:
10636892 - 财政年份:2022
- 资助金额:
$ 21.17万 - 项目类别:
Microphysiological Model of Human Cardiac Sympathetic Innervation
人类心脏交感神经支配的微生理模型
- 批准号:
10869757 - 财政年份:2022
- 资助金额:
$ 21.17万 - 项目类别:
Transcriptomic Entropy to Quantify Maturation of PSC-Derived Cardiomyocytes
转录组熵量化 PSC 衍生心肌细胞的成熟
- 批准号:
10179233 - 财政年份:2021
- 资助金额:
$ 21.17万 - 项目类别:
Transcriptomic Entropy to Quantify Maturation of PSC-Derived Cardiomyocytes
转录组熵量化 PSC 衍生心肌细胞的成熟
- 批准号:
10378025 - 财政年份:2021
- 资助金额:
$ 21.17万 - 项目类别:
Transcriptomic Entropy to Quantify Maturation of PSC-Derived Cardiomyocytes
转录组熵量化 PSC 衍生心肌细胞的成熟
- 批准号:
10661492 - 财政年份:2021
- 资助金额:
$ 21.17万 - 项目类别:
DISEASE MODELING AND PHENOTYPIC DRUG SCREENING FOR DYSTROPHIC CARDIOMYOPATHY
营养不良性心肌病的疾病建模和表型药物筛选
- 批准号:
10164856 - 财政年份:2020
- 资助金额:
$ 21.17万 - 项目类别:
相似国自然基金
上皮层形态发生过程中远程机械力传导的分子作用机制
- 批准号:31900563
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
基于飞秒激光微纳手术研究亚细胞尺度分子马达网络调控细胞三维运动的生物物理机理
- 批准号:31701215
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Sex specific epigenetic regulation of colon cancer metastasis
结肠癌转移的性别特异性表观遗传调控
- 批准号:
10443932 - 财政年份:2022
- 资助金额:
$ 21.17万 - 项目类别:
Sex specific epigenetic regulation of colon cancer metastasis
结肠癌转移的性别特异性表观遗传调控
- 批准号:
10698017 - 财政年份:2022
- 资助金额:
$ 21.17万 - 项目类别:
Sex specific epigenetic regulation of colon cancer metastasis
结肠癌转移的性别特异性表观遗传调控
- 批准号:
10698017 - 财政年份:2022
- 资助金额:
$ 21.17万 - 项目类别:
Cadherin-catenin regulation in dividing epithelial cells
分裂上皮细胞中钙粘蛋白-连环蛋白的调节
- 批准号:
10194544 - 财政年份:2018
- 资助金额:
$ 21.17万 - 项目类别:
Cell Polarity in Epithelial to Mesenchymal Transition
上皮细胞向间质细胞转变中的细胞极性
- 批准号:
7220365 - 财政年份:2007
- 资助金额:
$ 21.17万 - 项目类别: