Adversarially Based Virtual CT Workflow for Evaluation of AI in Medical Imaging
基于对抗性的虚拟 CT 工作流程,用于评估医学影像中的人工智能
基本信息
- 批准号:10391652
- 负责人:
- 金额:$ 65.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAgreementAnatomyArtificial IntelligenceAuthorization documentationBig DataBypassCatalogsChestClassificationClinicalCodeCommunitiesComputer softwareDataData SetDetectionDevelopmentDiagnosticDiseaseEffectivenessElementsEnsureEvaluationEvaluation MethodologyFeedbackFutureGenerationsGoalsHumanImageImage AnalysisIndividualIndustrializationInfrastructureInstitutesInternetLabelLearningMachine LearningMainstreamingMarketingMasksMedicalMedical DeviceMedical ImagingMedicineMethodsModelingNaturePathologicPathway AnalysisPatientsPerformancePlayPopulationPositioning AttributePublishingRegulationResearchResearch PersonnelRetrievalRoleRunningSafetySamplingScienceSemanticsSystemTechniquesTestingTexasTrainingTranslationsUniversitiesValidationVendorWorkX-Ray Computed Tomographyalgorithmic biasbaseclinical applicationclinical predictorsclinical translationclinically relevantdeep learningdeep neural networkempoweredfederated learningimage processingimage reconstructionimaging modalityimprovedinnovationinterestlearning strategylow dose computed tomographylung cancer screeningnovel strategiespatient privacyprototyperadiomicsreconstructionresearch and developmentsimulationtomographytoolvirtualvirtual patientweb site
项目摘要
Adversarially Based Virtual CT Workflow for Evaluation of AI in Medical Imaging
ABSTRACT
Over the past several years, artificial intelligence (AI) and machine learning (ML), especially deep learning (DL),
has been the most prominent direction of tomographic research, commercial development, clinical translation,
and FDA evaluation. Recently, it has become widely recognized that deep neural networks often have
generalizability issues and are vulnerable to adversarial attacks, deliberate or unintentional. This critical
challenge must be addressed to optimize the performance of deep neural networks in medical applications.
In January this year, FDA published an action plan for furthering the oversight for AI/DL-based software as
medical devices (SaMDs). One major action underlined in the plan is “regulatory science methods related to
algorithm bias and robustness”. The significance of ensuring the safety and effectiveness of AI/DL-based
SaMDs cannot be overestimated since AI is expected to play a critical role in the future of medicine. In this
context, the overall goal of this academic-FDA partnership R01 project is to generate diverse training and
challenging testing datasets of low-dose CT (LDCT) scans, prototype a virtual CT workflow, and establish an
evaluation methodology for AI-based imaging products to support FDA marketing authorization. The technical
innovation lies in cutting-edge DL methods empowered by (a) adversarial learning to generate anatomically
and pathologically representative features in the human chest; (b) adversarial attacking to probe the virtual CT
workflow in individual steps and its entirety; and (c) systematic evaluation methods to better characterize and
predict the clinical performance of AI-based imaging products. In contrast to other CT simulation pipelines, our
Adversarially Based CT (ABC) platform relies on adversarial learning to ensure diversity and realism of the
simulated data and images and improve the generalizability of deep networks, and utilizes adversarial samples
to probe the ABC workflow to address the robustness of deep networks.
The overarching hypothesis is that adversarial learning and attacking methods are powerful to deliver high-
quality datasets for AI-based imaging research and performance evaluation. The specific aims are: (1) diverse
patient modeling (SBU), (2) virtual CT scanning (UTSW), (3) deep CT imaging (RPI), (4) virtual workflow
validation (FDA), and (5) ABC system dissemination (RPI-SBU-UTSW-FDA). In this project, generative
adversarial learning will play an instrumental role in generating features of clinical semantics. Also, adversarial
samples will be produced in both sinogram and image domains. In these complementary ways, AI-based
imaging products can be efficiently evaluated for not only accuracy but also generalizability and robustness.
Upon completion, our ABC workflow/platform will be made publicly available and readily extendable to other
imaging modalities and other diseases. This ABC system will be shared through the FDA’s Catalog of
Regulatory Science Tools, and uniquely well positioned to greatly facilitate the development, assessment and
translation of emerging AI-based imaging products.
基于对抗性的虚拟 CT 工作流程,用于评估医学影像中的人工智能
抽象的
在过去的几年里,人工智能(AI)和机器学习(ML),特别是深度学习(DL),
一直是断层扫描研究、商业开发、临床转化、
最近,人们广泛认识到深度神经网络通常具有
普遍性问题,并且容易受到有意或无意的对抗性攻击,这一点至关重要。
必须解决挑战以优化深度神经网络在医疗应用中的性能。
今年 1 月,FDA 发布了一项行动计划,以进一步加强对基于 AI/DL 的软件的监管
该计划强调的一项主要行动是“与医疗器械相关的监管科学方法”。
确保基于AI/DL的安全性和有效性的意义”。
SaMD 不能被高估,因为人工智能预计将在医学的未来中发挥关键作用。
在此背景下,学术界与 FDA 合作 R01 项目的总体目标是开展多样化的培训和
具有挑战性的低剂量 CT (LDCT) 扫描测试数据集,建立虚拟 CT 工作流程原型,并建立
基于人工智能的成像产品的评估方法,以支持 FDA 营销授权。
创新在于尖端的 DL 方法,该方法由 (a) 对抗性学习生成解剖学
以及人体胸部的病理学代表性特征;(b)对抗性攻击以探测虚拟 CT
各个步骤及其整体的工作流程;以及 (c) 系统评估方法,以更好地描述和评估
与其他 CT 模拟流程相比,我们的预测基于 AI 的成像产品的临床表现。
基于对抗性的 CT (ABC) 平台依靠对抗性学习来确保模型的多样性和真实性
模拟数据和图像并提高深度网络的泛化性,并利用对抗性样本
探索 ABC 工作流程以解决深度网络的鲁棒性问题。
总体假设是,对抗性学习和攻击方法能够强大地提供高
基于人工智能的成像研究和性能评估的质量数据集的具体目标是:(1)多样化。
患者建模 (SBU)、(2) 虚拟 CT 扫描 (UTSW)、(3) 深度 CT 成像 (RPI)、(4) 虚拟工作流程
验证(FDA),以及(5)ABC 系统传播(RPI-SBU-UTSW-FDA)。
对抗性学习将在生成临床语义特征方面发挥重要作用。
样本将以基于人工智能的互补方式在正弦图和图像领域生成。
不仅可以有效评估成像产品的准确性,还可以评估其普遍性和鲁棒性。
完成后,我们的 ABC 工作流程/平台将公开可用,并可轻松扩展到其他人
该 ABC 系统将通过 FDA 的目录共享。
监管科学工具,具有独特的优势,可以极大地促进开发、评估和
新兴的基于人工智能的成像产品的翻译。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xun Jia其他文献
Xun Jia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xun Jia', 18)}}的其他基金
Next generation small animal radiation research platform
下一代小动物辐射研究平台
- 批准号:
10680056 - 财政年份:2022
- 资助金额:
$ 65.83万 - 项目类别:
Adversarially Based Virtual CT Workflow for Evaluation of AI in Medical Imaging
基于对抗性的虚拟 CT 工作流程,用于评估医学影像中的人工智能
- 批准号:
10592427 - 财政年份:2022
- 资助金额:
$ 65.83万 - 项目类别:
Human-like automated radiotherapy treatment planning via imitation learning
通过模仿学习制定类似人类的自动放射治疗计划
- 批准号:
10406863 - 财政年份:2021
- 资助金额:
$ 65.83万 - 项目类别:
Human-like automated radiotherapy treatment planning via imitation learning
通过模仿学习制定类似人类的自动放射治疗计划
- 批准号:
10610971 - 财政年份:2021
- 资助金额:
$ 65.83万 - 项目类别:
Intelligent treatment planning for cancer radiotherapy
癌症放疗智能治疗计划
- 批准号:
10190850 - 财政年份:2019
- 资助金额:
$ 65.83万 - 项目类别:
Intelligent treatment planning for cancer radiotherapy
癌症放疗智能治疗计划
- 批准号:
10593946 - 财政年份:2019
- 资助金额:
$ 65.83万 - 项目类别:
Intelligent treatment planning for cancer radiotherapy
癌症放疗智能治疗计划
- 批准号:
10593946 - 财政年份:2019
- 资助金额:
$ 65.83万 - 项目类别:
Intelligent treatment planning for cancer radiotherapy
癌症放疗智能治疗计划
- 批准号:
10363727 - 财政年份:2019
- 资助金额:
$ 65.83万 - 项目类别:
Precise image guidance for liver cancer stereotactic body radiotherapy using element-resolved motion-compensated cone beam CT
使用元素分辨运动补偿锥形束CT精确引导肝癌立体定向放射治疗
- 批准号:
10348153 - 财政年份:2018
- 资助金额:
$ 65.83万 - 项目类别:
Next generation small animal radiation research platform
下一代小动物辐射研究平台
- 批准号:
10895120 - 财政年份:2018
- 资助金额:
$ 65.83万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 65.83万 - 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 65.83万 - 项目类别:
Accelerating Genomic Data Sharing and Collaborative Research with Privacy Protection
通过隐私保护加速基因组数据共享和协作研究
- 批准号:
10735407 - 财政年份:2023
- 资助金额:
$ 65.83万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 65.83万 - 项目类别: