Intelligent treatment planning for cancer radiotherapy
癌症放疗智能治疗计划
基本信息
- 批准号:10190850
- 负责人:
- 金额:$ 49.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAnatomyAreaArtificial IntelligenceArtsBedsCancer PatientClinicalClinical TreatmentCommunicationComplexConceptionsConsultationsCuriositiesCustomDataDoseDue ProcessEnvironmentFailureGenerationsHead and Neck CancerHealthcareHumanImageImmunotherapyIndividualityIntelligenceLearningMedicalMedical centerMedicineModalityModelingNatureOperative Surgical ProceduresOrganPatient CarePatientsPhysiciansPlayProceduresProcessPsychological reinforcementRadiationRadiation therapyRiskRoleSiteSystemSystems DevelopmentTechniquesTechnologyTestingTimeTreatment outcomeValidationWorkarmbasecancer radiation therapycancer therapychemotherapydeep learningdeep reinforcement learningdesignexperiencehead and neck cancer patientindividual patientindividualized medicineinnovationnegative affectoptimal treatmentspopulation basedpreferencesatisfactionskillssuccesssupervised learningtreatment planningtreatment strategytumorvalidation studies
项目摘要
PROJECT SUMMARY
About 2/3 of cancer patients in US receive radiation therapy either alone or in conjunction with surgery,
chemotherapy, immunotherapy, etc. Treatment planning, where an optimal treatment strategy is designed for
each individual patient and executed for the whole treatment course, is analogous to the design of a blueprint
for building construction. If a treatment plan is poorly designed, the desired treatment outcome cannot be
achieved, no matter how well other components of radiation therapy are performed. In the current clinical
workflow, a treatment planner works towards a good quality plan in a trial-and-error fashion. Many rounds of
consultation between the planner and physician are needed to reach a plan of physician's satisfaction,
because physician's preference for a particular patient can hardly be quantified and precisely conveyed to the
planner. Consequently, planning time can be up to a week for complex cases and plan quality may be poor
and can vary significantly due to varying levels of physician and planner's skills and physician-planner
cooperation, etc., which substantially deteriorates treatment outcomes. For example, head and neck (H&N)
cancer patients treated with suboptimal plans present 20% lower 2-year overall survival and 24% higher 2-year
local-regional failure. Prolonged overall treatment process due to treatment planning reduces local-regional
control rate by 12–14% per week. Furthermore, as patient's anatomy can rapidly change within the planning
time, the optimally designed plan becomes inappropriate for the changed anatomy. Recently, artificial
intelligence (AI) has made colossal advancements. We believe that AI technologies have a great potential to
revolutionize treatment planning. Treatment planning consists of two major aspects: commonality and
individuality. By exploiting the commonality through deep supervised learning, we can develop a treatment plan
as good as those for previously treated similar patients. The individuality can be actualized by learning
physician's special considerations for a particular patient using deep reinforcement learning. Our preliminary
studies have demonstrated feasibility of these ideas. We hypothesize that an AI-based intelligent treatment
planning system can consistently produce high-quality treatment plans with extremely high efficiency. This
hypothesis will be tested using H&N cancer patients as a test bed via two aims. Aim 1, System development.
Develop two deep-learning models to realize the proposed treatment planning workflow and incorporate them
into a clinical environment. Aim 2, System validation. Acquire and analyze planning data before and after
system implementation. The innovation of this project is the use and customization of the state-of-the-art AI
techniques to solve a clinically important problem. These technologies would revolutionize treatment planning
process, leading to the efficient generation of consistently high quality plans, irrespective of human skills,
experiences, and communications, etc. Besides the significance demonstrated for the H&N cancer patients,
the system can be easily extended to other tumor sites, yielding more substantial impacts.
项目概要
在美国,大约 2/3 的癌症患者接受单独的放射治疗或联合手术治疗,
化疗、免疫疗法等。治疗计划,其中设计最佳治疗策略
每个患者并在整个治疗过程中执行,类似于蓝图的设计
如果处理计划设计不当,就无法达到预期的处理结果。
无论放射治疗的其他部分在当前的临床中执行得如何,都可以实现。
在工作流程中,治疗计划者通过多轮试错的方式制定出高质量的计划。
需要计划者和医生之间协商才能达成医生满意的计划,
因为医生对特定患者的偏好很难量化并准确传达给医生
经过检查,对于复杂的情况,计划时间可能长达一周,而且计划质量可能很差。
由于医生和计划者的技能水平以及医生-计划者的水平不同,可能会有很大差异
合作等,这会严重恶化治疗效果,例如头颈 (H&N)。
采用次优计划治疗的癌症患者的 2 年总生存率降低 20%,2 年总生存率提高 24%
由于治疗计划而延长的整体治疗过程减少了局部区域的失败。
每周控制率提高 12–14% 此外,由于患者的身体结构可能会在计划内迅速发生变化。
随着时间的推移,优化设计的计划变得不适合最近改变的解剖结构。
人工智能(AI)已经取得了巨大的进步,我们相信人工智能技术具有巨大的潜力。
彻底改变治疗计划。治疗包括两个主要方面的计划:共性和
通过深度监督学习利用共性,我们可以制定治疗计划。
与以前治疗过的类似患者一样好,可以通过学习来实现个性。
医生使用深度强化学习对特定患者的特殊考虑。
研究证明了这些想法的可行性,我们致力于基于人工智能的智能治疗。
规划系统能够以极高的效率持续制定高质量的治疗计划。
将通过两个目标,使用 H&N 癌症患者作为试验台来测试假设。
开发两个深度学习模型以实现所提出的治疗计划工作流程并将其合并
目标 2,获取并分析之前和之后的计划数据。
该项目的创新之处在于最先进的人工智能的使用和定制。
解决临床重要问题的技术这些技术将彻底改变治疗计划。
流程,从而有效生成始终如一的高质量计划,无论人员技能如何,
除了对H&N癌症患者所展示的意义外,
该系统可以轻松扩展到其他肿瘤部位,产生更实质性的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xun Jia其他文献
Xun Jia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xun Jia', 18)}}的其他基金
Adversarially Based Virtual CT Workflow for Evaluation of AI in Medical Imaging
基于对抗性的虚拟 CT 工作流程,用于评估医学影像中的人工智能
- 批准号:
10391652 - 财政年份:2022
- 资助金额:
$ 49.01万 - 项目类别:
Next generation small animal radiation research platform
下一代小动物辐射研究平台
- 批准号:
10680056 - 财政年份:2022
- 资助金额:
$ 49.01万 - 项目类别:
Adversarially Based Virtual CT Workflow for Evaluation of AI in Medical Imaging
基于对抗性的虚拟 CT 工作流程,用于评估医学影像中的人工智能
- 批准号:
10592427 - 财政年份:2022
- 资助金额:
$ 49.01万 - 项目类别:
Human-like automated radiotherapy treatment planning via imitation learning
通过模仿学习制定类似人类的自动放射治疗计划
- 批准号:
10406863 - 财政年份:2021
- 资助金额:
$ 49.01万 - 项目类别:
Human-like automated radiotherapy treatment planning via imitation learning
通过模仿学习制定类似人类的自动放射治疗计划
- 批准号:
10610971 - 财政年份:2021
- 资助金额:
$ 49.01万 - 项目类别:
Intelligent treatment planning for cancer radiotherapy
癌症放疗智能治疗计划
- 批准号:
10593946 - 财政年份:2019
- 资助金额:
$ 49.01万 - 项目类别:
Intelligent treatment planning for cancer radiotherapy
癌症放疗智能治疗计划
- 批准号:
10593946 - 财政年份:2019
- 资助金额:
$ 49.01万 - 项目类别:
Intelligent treatment planning for cancer radiotherapy
癌症放疗智能治疗计划
- 批准号:
10363727 - 财政年份:2019
- 资助金额:
$ 49.01万 - 项目类别:
Precise image guidance for liver cancer stereotactic body radiotherapy using element-resolved motion-compensated cone beam CT
使用元素分辨运动补偿锥形束CT精确引导肝癌立体定向放射治疗
- 批准号:
10348153 - 财政年份:2018
- 资助金额:
$ 49.01万 - 项目类别:
Next generation small animal radiation research platform
下一代小动物辐射研究平台
- 批准号:
10895120 - 财政年份:2018
- 资助金额:
$ 49.01万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Elucidating the role of pericytes in angiogenesis in the brain using a tissue-engineered microvessel model
使用组织工程微血管模型阐明周细胞在大脑血管生成中的作用
- 批准号:
10648177 - 财政年份:2023
- 资助金额:
$ 49.01万 - 项目类别:
Understanding the mechanistic link between vascular dysfunction and Alzheimers disease-related protein accumulation in the medial temporal lobe
了解血管功能障碍与内侧颞叶阿尔茨海默病相关蛋白积累之间的机制联系
- 批准号:
10736523 - 财政年份:2023
- 资助金额:
$ 49.01万 - 项目类别:
Development of a sample preparation protocol for 3D kidney ultrastructural analysis and immunolabeling by light microscopy
开发用于 3D 肾脏超微结构分析和光学显微镜免疫标记的样品制备方案
- 批准号:
10760947 - 财政年份:2023
- 资助金额:
$ 49.01万 - 项目类别:
Development of a regional anesthesia guidance system to increase patient access to opioid-sparing analgesia for hip fracture pain
开发区域麻醉引导系统,以增加患者获得髋部骨折疼痛的阿片类药物保留镇痛的机会
- 批准号:
10759550 - 财政年份:2023
- 资助金额:
$ 49.01万 - 项目类别:
Automated Machine Learning-Based Brain Artery Segmentation, Anatomical Prior Labeling, and Feature Extraction on MR Angiography
基于自动机器学习的脑动脉分割、解剖先验标记和 MR 血管造影特征提取
- 批准号:
10759721 - 财政年份:2023
- 资助金额:
$ 49.01万 - 项目类别: