Development and validation of a high-throughput MicroED-driven platform technology for natural product discovery

用于天然产物发现的高通量 MicroED 驱动平台技术的开发和验证

基本信息

  • 批准号:
    10618979
  • 负责人:
  • 金额:
    $ 63.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-06 至 2027-02-28
  • 项目状态:
    未结题

项目摘要

ABSTRACT This study is responsive to the Notice of Special Interest (NOSI) NOT-AT-21-006 “Fundamental Science Research on Complementary and Integrative Health Approaches, Including Natural Products or Mind and Body Interventions” objectives to “Develop targeted and untargeted bioinformatic approaches to identify active components in a natural product mixture.” Structural elucidation of natural products (NPs) remains a critical rate-limiting step in NP discovery campaigns. Difficulties in structural elucidation can arise from i) the lack of sufficient quantities of material for traditional analytical methods (e.g. nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography); ii) intrinsic physical properties of the NP, and iii) limitations of NMR capabilities in determining relative configuration. X-ray crystallography remains the gold-standard for unambiguous structural determination, including the assignment of stereochemistry. However, X-ray crystallographic analysis of newly-isolated NPs is often thwarted by insufficient quantities to provide crystals large enough for single-crystal diffraction or poor solid-state properties that preclude the formation of large, pristine crystals even when sufficient material is available. Given these challenges, we envision that application of the recently reported cryo-electron microscopy (CryoEM) modality micro-crystal electron diffraction (MicroED) could lead to vertical advances in the field of NP discovery directly responsive to this NOSI, as MicroED has recently been demonstrated to provide unambiguous structures from sub-micron-sized crystals of structurally complex chemical compounds that had failed to yield large crystals suitable for X-ray analysis. In this proposal, we aim to leverage a CryoEM/MicroED approach to resolving major bottlenecks in the structure elucidation of (partially) purified NPs and chemically complex NP mixtures. We hypothesize that we can advance the field of NP research through development and optimization of a high-throughput platform technology to identify NPs in complex mixtures and yield a novel diffractomics signature of molecules for integration into bioinformatics approaches. To evaluate this hypothesis, we will carry out three specific aims: 1) Use MicroED to solve structures of recalcitrant (partially) purified NPs; 2) Develop a high-throughput MicroED-based platform for compound discovery; and 3) Resolve major bottlenecks in structure determination of complex NP mixtures. For all aims, we will leverage a one-of-a-kind and expansive group of three NP collections (chemical libraries of extracts and partially purified fractions) derived from plants, marine organisms, and filamentous fungi. We anticipate advancement in the speed and accuracy of NP structural identification as a result of these studies, accelerating the rate of discovery of pharmacologically relevant NPs key to the improvement of human health.
抽象的 本研究响应特别兴趣通知 (NOSI) NOT-AT-21-006“基础科学 补充和综合健康方法的研究,包括天然产品或身心 “干预措施”的目标是“开发有针对性和无针对性的生物信息学方法来识别活性 天然产品混合物中的成分。” 天然产物 (NP) 的结构解析仍然是 NP 发现活动中关键的限速步骤。 结构阐明方面的困难可能是由于 i) 缺乏足够数量的传统材料 分析方法(例如核磁共振(NMR)光谱学和 X 射线晶体学); NP 的物理性质,以及 iii) NMR 能力在确定相对构型方面的局限性。 晶体学仍然是明确结构测定的黄金标准,包括分配 然而,新分离的纳米颗粒的 X 射线晶体学分析常常受到阻碍。 数量不足,无法提供足够大的晶体用于单晶衍射或固态特性较差 即使有足够的材料,也无法形成大的原始晶体。 挑战,我们设想最近报道的冷冻电子显微镜(CryoEM)模式的应用 微晶电子衍射(MicroED)可能直接导致纳米粒子发现领域的垂直进步 响应此 NOSI,因为 MicroED 最近已被证明可以提供明确的结构 结构复杂的化合物的亚微米尺寸晶体,未能产生大晶体 适用于X射线分析。 在本提案中,我们的目标是利用 CryoEM/MicroED 方法来解决结构中的主要瓶颈 我们认识到,我们可以推进(部分)纯化的纳米颗粒和化学复杂的纳米颗粒混合物的阐明。 NP研究领域通过开发和优化高通量平台技术来 识别复杂混合物中的纳米粒子,并产生新的分子衍射组学特征,以便整合到 为了评估这一假设,我们将实现三个具体目标:1)使用 MicroED 来评估这一假设。 解析顽固性(部分)纯化的纳米粒子的结构;2) 开发基于 MicroED 的高通量平台 化合物发现;3) 解决复杂纳米颗粒混合物结构测定的主要瓶颈。 为了实现所有目标,我们将利用由三个 NP 集合组成的独一无二的、广泛的组(化学库 提取物和部分纯化的级分)源自植物、海洋生物和丝状真菌。 预计这些研究的结果将提高 NP 结构识别的速度和准确性, 加快药理学相关纳米颗粒的发现速度,这对改善人类健康至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hosea Martin Nelson其他文献

Hosea Martin Nelson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hosea Martin Nelson', 18)}}的其他基金

Kinetically-Persistent Carbocationsin C-H Insertion Reactions and Biomimetic Cyclization Cascades
C-H 插入反应和仿生环化级联中的动力学持久碳阳离子
  • 批准号:
    10570774
  • 财政年份:
    2018
  • 资助金额:
    $ 63.21万
  • 项目类别:
Kinetically-Persistent Carbocations in C-H Insertion Reactions and Biomimetic Cyclization Cascades
C-H插入反应和仿生环化级联中的动力学持久碳阳离子
  • 批准号:
    10213783
  • 财政年份:
    2018
  • 资助金额:
    $ 63.21万
  • 项目类别:
Kinetically-Persistent Carbocationsin C-H Insertion Reactions and Biomimetic Cyclization Cascades
C-H 插入反应和仿生环化级联中的动力学持久碳阳离子
  • 批准号:
    10457262
  • 财政年份:
    2018
  • 资助金额:
    $ 63.21万
  • 项目类别:

相似国自然基金

加速器磁铁励磁电源扰动物理机制和观测抑制算法的研究
  • 批准号:
    12305170
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
动物中一类新的长前体miRNA的发现、预测算法设计及其功能初探
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
面向移动物联网的高效数据查询机制与算法研究
  • 批准号:
    62072402
  • 批准年份:
    2020
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
考虑充电站选址和容量限制的电动物流车辆路径问题研究
  • 批准号:
    71901177
  • 批准年份:
    2019
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
面向小动物模型的功能PAT多生理参数定量成像方法
  • 批准号:
    61901342
  • 批准年份:
    2019
  • 资助金额:
    24.5 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
  • 批准号:
    10725500
  • 财政年份:
    2023
  • 资助金额:
    $ 63.21万
  • 项目类别:
BRAIN CONNECTS: Synaptic resolution whole-brain circuit mapping of molecularly defined cell types using a barcoded rabies virus
大脑连接:使用条形码狂犬病病毒对分子定义的细胞类型进行突触分辨率全脑电路图谱
  • 批准号:
    10672786
  • 财政年份:
    2023
  • 资助金额:
    $ 63.21万
  • 项目类别:
All holographic two-photon electrophysiology
全全息双光子电生理学
  • 批准号:
    10616937
  • 财政年份:
    2023
  • 资助金额:
    $ 63.21万
  • 项目类别:
Hepatic Clearance Chip for Pharmacokinetics
用于药代动力学的肝脏清除芯片
  • 批准号:
    10761027
  • 财政年份:
    2023
  • 资助金额:
    $ 63.21万
  • 项目类别:
Determining the role of reward circuits behind different paternal care behaviors and the motivation to care for offspring by comparing two animal models
通过比较两种动物模型来确定不同父亲照顾行为背后的奖励回路的作用以及照顾后代的动机
  • 批准号:
    10454008
  • 财政年份:
    2022
  • 资助金额:
    $ 63.21万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了