Actin and focal adhesion remodeling as therapeutic targets in cardiovascular disease
肌动蛋白和粘着斑重塑作为心血管疾病的治疗靶点
基本信息
- 批准号:9303730
- 负责人:
- 金额:$ 51.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AbbreviationsAcousticsActinsAcuteAdhesionsAgeAgingAgonistAlzheimer&aposs DiseaseAmino Acid SequenceAnimalsAortaBioinformaticsBiological AssayBiological MarkersBiologyBiomechanicsBlood PressureBlood VesselsBrainCardiovascular DiseasesCardiovascular systemCellsChronicCollaborationsColloidsCoupledCytoskeletonDataDatabasesDefectDementiaDiffusion Magnetic Resonance ImagingExtracellular MatrixFilamentFluorescenceFluorescence MicroscopyFocal AdhesionsG ActinGoalsHeartHeart failureHistologyHumanHypertensionHypertrophyImmunoprecipitationImpairmentKidneyKidney DiseasesKidney FailureLeadLesionLigationLinkMagnetic Resonance ImagingMagnetismMediatingMetabolicMicrobubblesMicrofilamentsMolecularMonitorMusMuscle CellsOutcomePeptidesPhenylephrinePhysiologic pulseProtein IsoformsProteinsPublishingPulse PressureRecombinant ProteinsRecombinantsRegulationResearchSecondary HypertensionShockStressSystoleTechnologyTelemetryTestingTherapeuticTissuesTraumaUltracentrifugationUltrasonographyVascular DementiaVascular Smooth Muscleabsorptionadverse outcomeage effectageddesignepidemiology studyflexibilityhemodynamicsin vivoinhibitor/antagonistinnovationkidney vascular structuremicroscopic imagingnanobiotechnologynanoparticlenanosciencenovelpolymerizationpreventprogramsprototyperesponsesmall molecule inhibitortargeted deliverytherapeutic targetvaporvaporizationwhite matter
项目摘要
Recent epidemiological studies have made clear that human proximal aortic stiffness increases with age and
is an early and independent biomarker of, and probable contributor to, subsequent adverse cardiovascular
outcomes including kidney failure, hypertension and Alzheimer's Disease-related dementia. The normal
flexibility of the proximal aorta functions as a critical “shock absorber” to protect small downstream vessels
from the high pulses of pressure generated by the heart. We have shown in published studies that the
vascular smooth muscle cell (VSMC) regulates up to half of total aortic stiffness and that aging-induced loss
of regulation of the VSMC cytoskeleton leads to impairment of the ability of the aorta to perform this shock
absorption function. A major advance from our lab has been the demonstration that the cortical nonmuscle
actin cytoskeleton and its linkages to focal adhesions and the extracellular matrix are a particularly dynamic
and important part of the VSMC cytoskeleton. The broad goal of this program is to test the concept that
ultrasound-targeted, cell permeant decoy peptides and small molecule inhibitors can be used both to probe
function and to reverse aging-induced malfunction of the VSMC cytoskeleton. We will use cell permeant
decoy peptides and recombinant proteins developed by our lab, and for comparison, small molecule
inhibitors, to test the hypothesis that ex vivo stiffness of aortas from aged mice can be decreased by
mechanisms targeted to the VSMC cytoskeleton. We will mine protein sequence data bases to identify
VSMC-specific sequences. Synthetic decoy constructs targeting these sequences will test a proof of concept
for the selectivity and efficacy of the peptide approach. We will use biomechanics, magnetic tweezers,
proximity ligation analysis, actin polymerization assays and immunoprecipitation to confirm the mechanism of
action of decoys. We will test, in collaboration with Tyrone Porter of our Nanoscience Center, the hypothesis
that microbubble-packaging of cell-permeant decoys and ultrasound-mediated release will allow localized,
tissue-specific targeted delivery of effective decoys. We will test the hypothesis that tissue-targeted decoys
can acutely reduce PWV in vivo in mice and that chronic in vivo treatment can prevent 3 negative outcomes
associated with aging-induced increased aortic stiffness: brain vascular lesions, hypertension and renal
damage. Hence, we propose a highly innovative research strategy to attack aging-induced alterations in the
vascular actin cytoskeleton and its linkage to focal adhesions. This approach, no matter the outcome, will
answer major questions about aortic stiffness and its relationship to vascular function with age. If successful,
this approach has the potential to prevent or reverse a host of aging-associated cardiovascular disorders.
最近的流行病学研究表明,人类近端主动脉僵硬度随着年龄的增长而增加
是随后不良心血管事件的早期且独立的生物标志物,并且可能是其促成因素
结果包括肾衰竭、高血压和阿尔茨海默病相关的痴呆症。
近端主动脉的灵活性作为重要的“减震器”来保护下游的小血管
我们在已发表的研究中表明,
血管平滑肌细胞 (VSMC) 调节多达一半的总主动脉硬度以及衰老引起的损失
VSMC 细胞骨架的调节失灵会导致主动脉执行此冲击的能力受损
我们实验室的一个重大进展是证明皮质非肌肉具有吸收功能。
肌动蛋白细胞骨架及其与粘着斑和细胞外基质的联系是一个特别动态的
VSMC 细胞骨架的重要组成部分 该计划的总体目标是测试以下概念:
超声靶向、细胞渗透性诱饵肽和小分子抑制剂均可用于探测
功能并逆转老化引起的 VSMC 细胞骨架功能障碍,我们将使用细胞渗透剂。
我们实验室开发的诱饵肽和重组蛋白,为了进行比较,小分子
抑制剂,以检验以下假设:老年小鼠主动脉的离体硬度可以通过以下方法降低
我们将挖掘蛋白质序列数据库来识别针对 VSMC 细胞骨架的机制。
针对这些序列的 VSMC 特异性序列将测试概念验证。
为了提高肽方法的选择性和功效,我们将使用生物力学、磁力镊子、
邻近连接分析、肌动蛋白聚合测定和免疫沉淀以确认其机制
我们将与我们纳米科学中心的蒂龙·波特合作测试这一假设。
细胞渗透诱饵的微泡包装和超声介导的释放将允许局部、
有效诱饵的组织特异性靶向递送 我们将检验组织靶向诱饵的假设。
可以急剧降低小鼠体内 PWV,并且长期体内治疗可以预防 3 种负面结果
与衰老引起的主动脉僵硬度增加相关:脑血管病变、高血压和肾病
因此,我们提出了一种高度创新的研究策略来应对衰老引起的变化。
血管肌动蛋白细胞骨架及其与粘着斑的联系,无论结果如何,都会。
回答有关主动脉僵硬度及其与年龄的血管功能关系的主要问题。
这种方法有可能预防或逆转许多与衰老相关的心血管疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KATHLEEN G MORGAN其他文献
KATHLEEN G MORGAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KATHLEEN G MORGAN', 18)}}的其他基金
Plasticity of the Vascular Smooth Muscle Cytoskeleton
血管平滑肌细胞骨架的可塑性
- 批准号:
7329374 - 财政年份:2007
- 资助金额:
$ 51.93万 - 项目类别:
Dynamics of the Vascular Smooth Muscle Cytoskeleton
血管平滑肌细胞骨架的动力学
- 批准号:
7640886 - 财政年份:2007
- 资助金额:
$ 51.93万 - 项目类别:
Dynamics of the Vascular Smooth Muscle Cytoskeleton
血管平滑肌细胞骨架的动力学
- 批准号:
7299738 - 财政年份:2007
- 资助金额:
$ 51.93万 - 项目类别:
Dynamics of the Vascular Smooth Muscle Cytoskeleton
血管平滑肌细胞骨架的动力学
- 批准号:
7862421 - 财政年份:2007
- 资助金额:
$ 51.93万 - 项目类别:
Dynamics of the Vascular Smooth Muscle Cytoskeleton
血管平滑肌细胞骨架的动力学
- 批准号:
7467317 - 财政年份:2007
- 资助金额:
$ 51.93万 - 项目类别:
Dynamics of the Vascular Smooth Muscle Cytoskeleton
血管平滑肌细胞骨架的动力学
- 批准号:
8079499 - 财政年份:2007
- 资助金额:
$ 51.93万 - 项目类别:
相似国自然基金
鼓泡床密相区温度、颗粒浓度与气泡分布的二维同步声学双参数成像
- 批准号:62301355
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非厄米声学晶格系统中的拓扑物理研究
- 批准号:12374418
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
多孔声学超材料宏微观结构耦合强化吸声机制与多尺度结构设计技术
- 批准号:52375122
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
轨道模式依赖的声学拓扑态及其应用研究
- 批准号:12304492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学拓扑安德森绝缘体拓扑特性研究
- 批准号:12304486
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Molecular and Cellular Mechanisms of Acoustic Startle Threshold Regulation
声惊吓阈值调节的分子和细胞机制
- 批准号:
10599887 - 财政年份:2021
- 资助金额:
$ 51.93万 - 项目类别:
Molecular and Cellular Mechanisms of Acoustic Startle Threshold Regulation
声惊吓阈值调节的分子和细胞机制
- 批准号:
10360545 - 财政年份:2021
- 资助金额:
$ 51.93万 - 项目类别:
Molecular and Cellular Mechanisms of Acoustic Startle Threshold Regulation
声惊吓阈值调节的分子和细胞机制
- 批准号:
10211396 - 财政年份:2021
- 资助金额:
$ 51.93万 - 项目类别:
Mechanisms Mediating Repair of Stereocilia F-actin in Sensory Hair Cells
感觉毛细胞中立体纤毛 F-肌动蛋白修复的介导机制
- 批准号:
10366129 - 财政年份:2018
- 资助金额:
$ 51.93万 - 项目类别:
Understanding the Role of Actin-Bundling Protein Supervillin in the Development and the Function of the Cuticular Plate of the Mechanosensory Hair Cells in Zebrafish
了解肌动蛋白捆绑蛋白超级绒毛蛋白在斑马鱼机械感觉毛细胞角质板的发育和功能中的作用
- 批准号:
9567439 - 财政年份:2017
- 资助金额:
$ 51.93万 - 项目类别: