The Role of the Cytoskeleton in Vascular Aging
细胞骨架在血管衰老中的作用
基本信息
- 批准号:8941839
- 负责人:
- 金额:$ 20.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAgeAgingAgonistAnimalsAortaBiochemicalBiological MarkersBiomechanicsBlood PressureBlood VesselsBrainCardiovascular DiseasesCardiovascular systemCellsCellular AssayChronicCollaborationsComplexCytoskeletonDataDementiaEngineeringEpidemiologic StudiesExtracellular MatrixFilamentFocal AdhesionsFundingGoalsHandHeartHeart failureHumanHypertensionHypertrophyImmunoprecipitationImpairmentIn VitroIntegrinsKidneyKidney FailureLeadLesionLifeLigationLinkMagnetic Resonance ImagingMagnetismMicroscopyMolecularMonitorMusMuscleNanotechnologyOutcomePeptidesPhasePhysiologic pulsePreventionProtein IsoformsProteinsPublishingPulse PressureRegulationRelative (related person)ResearchRoleShockSignal TransductionSmooth Muscle MyocytesStressSubgroupTalinTestingTherapeuticTimeTissuesVascular DementiaVinculinabsorptionage effectagedbasecollegehemodynamicsin vitro testingin vivoinhibitor/antagonistinnovationjuvenile animalmouse modelnanoparticlenovelpreventprogramsprotein protein interactionprototypepublic health relevanceresponsesmall moleculetool
项目摘要
DESCRIPTION (provided by applicant): The proximal aorta normally functions as a critical "shock absorber" to protect small downstream vessels from the high pulses of pressure generated by the heart. Recent epidemiological studies have made clear that human proximal aortic stiffness increases with age and is an early and independent biomarker of, and probable contributor to, subsequent adverse cardiovascular outcomes including kidney failure, hypertension and vascular dementia. We have shown in published studies that the vascular smooth muscle cell (VSMC) regulates up to half of total aortic stiffness and that aging-induced loss of regulation of the VSMC cytoskeleton leads to impairment of the ability of the aorta to perform this shock absorption function. A major advance from our lab has been the demonstration that the cortical nonmuscle actin cytoskeleton and its linkage to focal adhesions and the extracellular matrix is a particularly dynamic and important part of the VSMC cytoskeleton. The broad goal of this program is to define molecular mechanisms of aging-associated malfunction of the vascular actin cytoskeleton and its connection with focal adhesion (FA) complexes and to furthermore develop a nanoparticle-targeted approach utilizing cell permeant decoy peptides to reverse this malfunction. In the R21 phase, we will use small molecule inhibitors and decoy peptides, together with biomechanics, magnetic tweezers, deconvolution microscopy, proximity ligation analysis (PLA), immunoprecipitation and other biochemical and cellular assays to test, in vitro, the cause-and-effect relationship between changes in the cytoskeleton and aortic tissue stiffness. Based on preliminary data, we will focus specifically on inhibition of cortical actin elongation and branching mechanisms, actin-focal adhesion connections and focal adhesion protein-protein interactions. In the R33 phase we will extend the cell permeant peptide approach to select peptides that are effective in aged mouse tissues in vitro, and implement, with Dr. Porter in the BU Engineering College an application of his nanotechnology approach for tissue-specific targeted release of the decoy peptides. The successful nanoparticle-packaged peptides will be used in young and old mice acutely in vivo to determine the effect of the peptides to decrease pulse wave velocity (PWV) and blood pressure and hence demonstrate a cause-and-effect relationship between cytoskeletal function and aortic stiffness. Additionally, a 6 month chronic trial will test the ability of nanoparticle packaged peptides to reverse changes in blood pressure, PWV, MRI-monitored brain vascular damage and kidney damage to provide the impetus for longer chronic studies. Hence, we propose a highly innovative research strategy to define and attack aging-induced alterations in the vascular actin cytoskeleton and its linkage to FAs. This approach, if successful, has the potential to prevent or reverse a host of aging-associated cardiovascular disorders.
描述(由申请人提供):近端主动脉通常充当关键的“减震器”,以保护下游小血管免受心脏产生的高压力脉冲的影响,最近的流行病学研究表明,人类近端主动脉僵硬度随着年龄的增长而增加。是肾衰竭、高血压和血管性痴呆等后续不良心血管结局的早期独立生物标志物,并且可能是其促成因素。我们在已发表的研究中表明,血管平滑肌细胞 (VSMC) 会上调。总主动脉僵硬度的一半,并且衰老引起的 VSMC 细胞骨架调节丧失会导致主动脉执行这种减震功能的能力受损。我们实验室的一个重大进展是证明了皮质非肌肉肌动蛋白细胞骨架。它与粘着斑和细胞外基质的联系是 VSMC 细胞骨架的一个特别动态和重要的部分,该项目的总体目标是定义与衰老相关的功能障碍的分子机制。血管肌动蛋白细胞骨架及其与粘着斑 (FA) 复合物的连接,并进一步开发利用细胞渗透性诱饵肽来逆转这种功能障碍的纳米颗粒靶向方法。在 R21 阶段,我们将使用小分子抑制剂和诱饵肽以及生物力学。 、磁镊、反卷积显微镜、邻近连接分析(PLA)、免疫沉淀等生化和细胞分析在体外测试细胞骨架变化与主动脉组织硬度之间的因果关系 根据初步数据,我们将特别关注皮质肌动蛋白伸长和分支机制、肌动蛋白-焦点粘附连接和焦点的抑制。在 R33 阶段,我们将扩展细胞渗透肽方法,以选择在体外对衰老小鼠组织有效的肽,并与工程部的 Porter 博士一起实施。学院将他的纳米技术方法应用于组织特异性靶向释放诱饵肽,成功地将纳米颗粒包装的肽用于年轻和年老小鼠的体内,以确定肽降低脉搏波速度(PWV)的效果。此外,一项为期 6 个月的长期试验将测试纳米颗粒包装的肽逆转血液变化的能力。因此,我们提出了一种高度创新的研究策略来定义和攻击衰老引起的血管肌动蛋白细胞骨架的变化及其与 FA 的联系。这种方法如果成功,有可能预防或逆转许多与衰老相关的心血管疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KATHLEEN G MORGAN其他文献
KATHLEEN G MORGAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KATHLEEN G MORGAN', 18)}}的其他基金
Actin and focal adhesion remodeling as therapeutic targets in cardiovascular disease
肌动蛋白和粘着斑重塑作为心血管疾病的治疗靶点
- 批准号:
9303730 - 财政年份:2017
- 资助金额:
$ 20.46万 - 项目类别:
Plasticity of the Vascular Smooth Muscle Cytoskeleton
血管平滑肌细胞骨架的可塑性
- 批准号:
7329374 - 财政年份:2007
- 资助金额:
$ 20.46万 - 项目类别:
Dynamics of the Vascular Smooth Muscle Cytoskeleton
血管平滑肌细胞骨架的动力学
- 批准号:
7299738 - 财政年份:2007
- 资助金额:
$ 20.46万 - 项目类别:
Dynamics of the Vascular Smooth Muscle Cytoskeleton
血管平滑肌细胞骨架的动力学
- 批准号:
7640886 - 财政年份:2007
- 资助金额:
$ 20.46万 - 项目类别:
Dynamics of the Vascular Smooth Muscle Cytoskeleton
血管平滑肌细胞骨架的动力学
- 批准号:
7862421 - 财政年份:2007
- 资助金额:
$ 20.46万 - 项目类别:
Dynamics of the Vascular Smooth Muscle Cytoskeleton
血管平滑肌细胞骨架的动力学
- 批准号:
7467317 - 财政年份:2007
- 资助金额:
$ 20.46万 - 项目类别:
Dynamics of the Vascular Smooth Muscle Cytoskeleton
血管平滑肌细胞骨架的动力学
- 批准号:
8079499 - 财政年份:2007
- 资助金额:
$ 20.46万 - 项目类别:
相似国自然基金
TBX20在致盲性老化相关疾病年龄相关性黄斑变性中的作用和机制研究
- 批准号:82220108016
- 批准年份:2022
- 资助金额:252 万元
- 项目类别:国际(地区)合作与交流项目
LncRNA ALB调控LC3B活化及自噬在体外再生晶状体老化及年龄相关性白内障发病中的作用及机制研究
- 批准号:81800806
- 批准年份:2018
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
APE1调控晶状体上皮细胞老化在年龄相关性白内障发病中的作用及机制研究
- 批准号:81700824
- 批准年份:2017
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
KDM4A调控平滑肌细胞自噬在年龄相关性血管老化中的作用及机制
- 批准号:81670269
- 批准年份:2016
- 资助金额:55.0 万元
- 项目类别:面上项目
A2E老化ARMS2/HTRA1型iPSC-RPE细胞的研究:个体化AMD发病机制初步探索
- 批准号:81400412
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Identifying mechanistic pathways underlying RPE pathogenesis in models of pattern dystrophy
识别模式营养不良模型中 RPE 发病机制的机制途径
- 批准号:
10636678 - 财政年份:2023
- 资助金额:
$ 20.46万 - 项目类别:
Protein modification and the aging phenotype of human skeletal muscle
蛋白质修饰与人类骨骼肌的衰老表型
- 批准号:
10593791 - 财政年份:2023
- 资助金额:
$ 20.46万 - 项目类别:
Tubulin modifications and cytoskeletal alterations in aging
衰老过程中的微管蛋白修饰和细胞骨架变化
- 批准号:
10590128 - 财政年份:2023
- 资助金额:
$ 20.46万 - 项目类别: