P-selectin-Mediated Targeting of PI3K Nanomedicines to the Tumor Microenvironment
P-选择素介导的 PI3K 纳米药物靶向肿瘤微环境
基本信息
- 批准号:10310486
- 负责人:
- 金额:$ 62.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-12-15 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAffectAffinityAntineoplastic AgentsApoptosisAttenuatedBiochemicalBiodistributionBloodBlood PlateletsBlood VesselsCell Adhesion MoleculesCell membraneCellsChronicClinical ResearchCodeDiseaseDose-LimitingDrug CarriersDrug Delivery SystemsDrug KineticsDrug ModulationDrug TargetingEncapsulatedEndothelial CellsEndotheliumEnvironmentExhibitsExternal Beam Radiation TherapyGenomicsGlucoseGoalsHead and Neck Squamous Cell CarcinomaHistologyHumanHyperglycemiaInsulinIonizing radiationLaboratoriesMalignant NeoplasmsMeasuresMediatingMicroscopyMutationNeoplasm MetastasisNeoplasms in Vascular TissueOrganOutcomeP-SelectinPIK3CA genePatientsPharmaceutical PreparationsPharmacologyPolysaccharidesPositron-Emission TomographyRadiationRadioisotopesResearchResearch PersonnelSerumSignal PathwaySiteSolid NeoplasmTechnologyTherapeuticTherapeutic IndexTissuesToxic effectToxicologyTreatment-related toxicityTumor TissueWorkbasecancer cellcell stromaimprovedindividualized medicineinhibitorliquid chromatography mass spectrometrynanomedicinenanomolarnanoparticlenanoparticle deliverynanoparticle drugneoplastic cellnovel strategiesnovel therapeutic interventionpancreatic islet functionpersonalized medicinephase I trialside effecttargeted treatmenttreatment responsetumortumor growthtumor microenvironment
项目摘要
SUMMARY
Personalized medicine, based on the genomic context of a patient’s disease, has become a leading strategy to
treat cancer. However, despite the promising results from customized treatments, targeted therapies affect the
same signaling pathways in non-cancerous cells, often leading to dose-limiting, “on-target” toxicities. One such
example involves PI3K inhibitors. In head and neck squamous cell carcinoma (HNSCC), the 6th most common
cancer worldwide, 34%-56% of tumors harbor mutations or amplifications in PIK3CA, the gene coding for the
p110α subunit of PI3K. PI3Kα inhibitors carry a significant toxicity profile, however, that limits their therapeutic
window, specifically in patients who develop intractable hyperglycemia. Using a targeted drug delivery
approach, we have identified a strategy to address this need. The PI developed a new class of nanoparticles
targeted to P-selectin which allows the incorporation of a wide variety of therapeutic molecules, including
targeted therapies (Shamay, Sci Transl Med 2016). We built a collaborative research team that employed this
technology to target tumors expressing endothelial P-selectin, either at baseline or radiation-induced (Mizrachi,
Nat Commun 2017). The strategy effected a significantly improved therapeutic index and survival, while
minimizing the side effects of targeted therapeutics. Notably, we found that PI3K inhibitors, targeted using our
nanoparticle vehicle, resulted in prolonged pS6 inhibition and anti-tumor efficacy, while minimizing acute and
chronic effects of hyperglycemia. The objective of this project is to investigate, in the context of HNSCC, the
nanoparticle-mediated delivery of PI3K therapies via P-selectin, expressed spontaneously or induced by
radiation. This proposal’s goals are to understand the modulation of drug pharmacology, efficacy, toxicities,
interactions with HNSCC tumor microenvironment, and the impact of ionizing radiation on these parameters.
We plan to pursue the following specific aims: 1) Assess P-selectin-mediated targeting to the tumor
microenvironment. We will measure the localization of the nanoparticle and encapsulated drug in the tumor
microenvironment from the organ to cellular levels. 2) Enhance nanoparticle localization via radiation-induced
endothelial activation. Based on our understanding of radiation-induced expression of P-selectin, we
hypothesize that external beam radiation can increase localization of a P-selectin-targeted PI3K inhibitor in
disseminated tumors due to the increased availability of the target. 3) Assess efficacy of P-selectin-mediated
targeting of PI3K inhibitors. We will assess the relationship between drug delivery mechanism and treatment
response. We hypothesize: (i) that the P-selectin-based targeting will improve PI3K inhibitor-mediated efficacy
and apoptosis in tumors, (ii) that radiation may increase the relative efficacy of the inhibitor, (iii) that
nanoparticle-mediated P-selectin targeting will mitigate PI3K-mediated hyperglycemia, and (iv) that
nanoparticle-delivered therapeutic combinations will improve synergistic effects while attenuating toxicities that
arise from systemic administration of multiple inhibitors. The outcomes will inform IND and clinical studies.
概括
基于患者疾病基因组背景的个性化医疗已成为一种领先策略
然而,尽管定制治疗取得了有希望的结果,但靶向治疗仍会影响癌症的治疗。
在非癌细胞中存在相同的信号通路,通常会导致剂量限制的“靶向”毒性。
例如,在头颈鳞状细胞癌 (HNSCC) 中,PI3K 抑制剂是第六常见的癌症。
在全世界的癌症中,34%-56% 的肿瘤存在 PIK3CA 突变或扩增,PIK3CA 是编码
然而,PI3Kα 抑制剂的 p110α 亚基具有显着的毒性特征,这限制了其治疗。
窗口,特别是对于患有顽固性高血糖的患者,使用靶向药物输送。
方法,我们已经确定了解决这一需求的策略,开发了一种新型纳米颗粒。
靶向 P-选择素,允许掺入多种治疗分子,包括
靶向治疗(Shamay,Sci Transl Med 2016)我们建立了一个采用该疗法的合作研究团队。
技术靶向表达内皮 P-选择素的肿瘤,无论是在基线还是辐射诱导的(Mizrachi,
Nat Commun 2017)该策略显着改善了治疗指数和生存率。
值得注意的是,我们发现 PI3K 抑制剂可以使用我们的靶向药物。
纳米颗粒载体,导致延长 pS6 抑制和抗肿瘤功效,同时最大限度地减少急性和
该项目的目的是在 HNSCC 的背景下调查高血糖的慢性影响。
纳米颗粒介导的通过 P-选择素传递 PI3K 疗法,自发表达或诱导表达
该提案的目标是了解药物药理学、功效、毒性的调节,
与 HNSCC 肿瘤微环境的相互作用,以及电离辐射对这些参数的影响。
我们计划实现以下具体目标:1) 评估 P-选择素介导的肿瘤靶向作用
我们将测量纳米颗粒和封装药物在肿瘤中的定位。
2) 通过辐射诱导增强纳米粒子定位
基于我们对辐射诱导的 P-选择素表达的理解,我们
研究发现外部束辐射可以增加 P-选择素靶向 PI3K 抑制剂在
3) 评估 P-选择素介导的功效
我们将评估药物递送机制和治疗之间的关系。
我们认为:(i) 基于 P-选择素的靶向将提高 PI3K 抑制剂介导的功效。
和肿瘤细胞凋亡,(ii) 辐射可能会增加抑制剂的相对功效,(iii)
纳米颗粒介导的 P-选择素靶向将减轻 PI3K 介导的高血糖,并且 (iv)
纳米颗粒递送的治疗组合将提高协同效应,同时减轻毒性
多种抑制剂的全身给药产生的结果将为 IND 和临床研究提供信息。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Merging data curation and machine learning to improve nanomedicines.
合并数据管理和机器学习以改进纳米医学。
- DOI:
- 发表时间:2022-04
- 期刊:
- 影响因子:16.1
- 作者:Chen, Chen;Yaari, Zvi;Apfelbaum, Elana;Grodzinski, Piotr;Shamay, Yosi;Heller, Daniel A
- 通讯作者:Heller, Daniel A
Selective nanoparticle-mediated targeting of renal tubular Toll-like receptor 9 attenuates ischemic acute kidney injury.
选择性纳米颗粒介导的肾小管 Toll 样受体 9 的靶向可减轻缺血性急性肾损伤。
- DOI:10.1016/j.kint.2020.01.036
- 发表时间:2020-07
- 期刊:
- 影响因子:19.6
- 作者:Han SJ;Williams RM;D'Agati V;Jaimes EA;Heller DA;Lee HT
- 通讯作者:Lee HT
Glutathione-S-transferase Fusion Protein Nanosensor.
谷胱甘肽-S-转移酶融合蛋白纳米传感器。
- DOI:10.1021/acs.nanolett.0c02691
- 发表时间:2020-10-14
- 期刊:
- 影响因子:10.8
- 作者:Williams RM;Harvey JD;Budhathoki-Uprety J;Heller DA
- 通讯作者:Heller DA
En route to single-step, two-phase purification of carbon nanotubes facilitated by high-throughput spectroscopy.
通过高通量光谱法促进碳纳米管的单步、两相纯化。
- DOI:
- 发表时间:2021-05-19
- 期刊:
- 影响因子:4.6
- 作者:Podlesny, Blazej;Olszewska, Barbara;Yaari, Zvi;Jena, Prakrit V;Ghahramani, Gregory;Feiner, Ron;Heller, Daniel A;Janas, Dawid
- 通讯作者:Janas, Dawid
Hyperspectral Counting of Multiplexed Nanoparticle Emitters in Single Cells and Organelles.
单细胞和细胞器中多重纳米颗粒发射器的高光谱计数。
- DOI:
- 发表时间:2022-02-22
- 期刊:
- 影响因子:17.1
- 作者:Jena, Prakrit V;Gravely, Mitchell;Cupo, Christian;Safaee, Mohammad Moein;Roxbury, Daniel;Heller, Daniel A
- 通讯作者:Heller, Daniel A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Alan Heller其他文献
Daniel Alan Heller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Alan Heller', 18)}}的其他基金
Nanosensor Array Platform to Capture Whole Disease Fingerprints
捕获整个疾病指纹的纳米传感器阵列平台
- 批准号:
10660707 - 财政年份:2023
- 资助金额:
$ 62.65万 - 项目类别:
Efficacy and pharmacokinetic assessment of renal-targeted therapy in a pig model of cisplatin induced acute kidney injury.
顺铂诱导的急性肾损伤猪模型中肾脏靶向治疗的疗效和药代动力学评估。
- 批准号:
10384209 - 财政年份:2021
- 资助金额:
$ 62.65万 - 项目类别:
Tumor-Selective Delivery Approaches for Medulloblastoma
髓母细胞瘤的肿瘤选择性递送方法
- 批准号:
10543087 - 财政年份:2020
- 资助金额:
$ 62.65万 - 项目类别:
Tumor-Selective Delivery Approaches for Medulloblastoma
髓母细胞瘤的肿瘤选择性递送方法
- 批准号:
10320961 - 财政年份:2020
- 资助金额:
$ 62.65万 - 项目类别:
Renal tubule-specific nanotherapeutics for acute kidney injury
肾小管特异性纳米疗法治疗急性肾损伤
- 批准号:
9982323 - 财政年份:2018
- 资助金额:
$ 62.65万 - 项目类别:
P-selectin-Mediated Targeting of PI3K Nanomedicines to the Tumor Microenvironment
P-选择素介导的 PI3K 纳米药物靶向肿瘤微环境
- 批准号:
10061563 - 财政年份:2017
- 资助金额:
$ 62.65万 - 项目类别:
Transient Metabolite Detection for Single-Cell Metabolomics and Diagnostics
用于单细胞代谢组学和诊断的瞬时代谢物检测
- 批准号:
8358296 - 财政年份:2012
- 资助金额:
$ 62.65万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 62.65万 - 项目类别:
Investigating the Effect of FLASH-Radiotherapy on Tumor and Normal Tissue
研究 FLASH 放射治疗对肿瘤和正常组织的影响
- 批准号:
10650476 - 财政年份:2023
- 资助金额:
$ 62.65万 - 项目类别:
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 62.65万 - 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 62.65万 - 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 62.65万 - 项目类别: