Nanosensor Array Platform to Capture Whole Disease Fingerprints
捕获整个疾病指纹的纳米传感器阵列平台
基本信息
- 批准号:10660707
- 负责人:
- 金额:$ 69.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-15 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAdsorptionBindingBinding ProteinsBiologicalBiological MarkersBlindedCA-125 AntigenCancer PatientCarbon NanotubesChemicalsClinicalCollectionColorDNADNA LibraryDNA SequenceData SetDetectionDiagnosisDiagnosticDiseaseDisease remissionEarly DiagnosisElementsEventExcisionExhibitsFDA approvedFingerprintLibrariesMachine LearningMalignant neoplasm of ovaryMeasurementModelingMolecularOperative Surgical ProceduresOpticsOutcomePatientsPatternPerceptionPharmaceutical PreparationsPrincipal Component AnalysisProcessPropertyProtein AnalysisProteinsProteomicsRecurrenceRecurrent Malignant NeoplasmSaltsSamplingScreening for Ovarian CancerSerousSerumSourceSpecificitySurvival RateTestingTrainingValidationVariantWorkbiomarker discoverybiomarker identificationbiomarker validationburden of illnesscancer recurrenceclinically relevantdesigndisease classificationexperimental studyimprovedinnovationlarge datasetsmachine learning algorithmmachine learning classificationmachine learning modelmolecular markernanosensorsnovel markerpredictive modelingpreventprotein biomarkersresponsescreeningsensortechnology platform
项目摘要
SUMMARY
This project endeavors to build a nanosensor array platform technology to detect whole disease fingerprints from
patient biofluids to facilitate diagnosis, screening, and biomarker discovery efforts. Serum biomarker measure-
ments are widely used as diagnostic indicators, but many markers are not sufficient for assessments of disease
state. Major factors limiting diagnosis and screening using most biomarkers include their low specificity for dis-
eases and the overall dearth of established molecular markers. Innovative approaches are needed to identify
new biomarkers and/or improve screening and diagnostic efforts in the absence of validated biomarkers. We
believe that the differentiation of diseased from normal biofluids may be achieved by the detection of a “disease
fingerprint” through the collection of large data sets of molecular binding interactions to a diverse set of moder-
ately-selective sensors, which are used to train machine learning algorithms. We will build a sensor array com-
prising organic color centers (OCCs, covalently-modified carbon nanotubes) to transduce subtle differences
in physicochemical properties of molecules in biofluids. With sufficient diversity, the sensors can differentiate bi-
ofluids by disease status with the aid of machine learning processes. In preliminary experiments, we found that
a library of OCC-DNA nanosensors exhibited sensitive and differentiated spectral variation to probe an ensemble
of molecular binding events. Via machine learning algorithms, we built a prediction model of nanosensor re-
sponses that reliably identified high-grade serous ovarian cancer (HGSC) substantially better than the estab-
lished, FDA-approved biomarker, CA125, using an initial set of 264 patient serum samples (Nat Biomed Eng,
2022). Despite advances in the understanding and management of HGSC, survival is currently poor when diag-
nosed at later stages, and detection is uncommon at early stages. Surgery is the first-line treatment, and cancer
recurs in 70% of patients in remission. Secondary surgery can prolong survival but only if performed early enough
to enable complete resection. Improved detection of early-recurrent and early-stage HGSC would therefore
markedly increase survival rates. We plan to develop a robust diagnostic sensor platform to improve early de-
tection of ovarian cancer and recurrence, and to accelerate biomarker discovery processes. Additionally, quan-
titative analysis of proteins bound to the sensors can determine the unique pattern of protein adsorption respon-
sible for the disease-specific spectral responses, thereby potentially facilitating biomarker discovery. We propose
to investigate: 1) the diversity of molecular sensitivities of OCC-DNA nanosensor elements required to differen-
tiate patient samples, 2) machine learning-based classification of disease, focusing on early-recurrence and
early-stage HGSC, 3) the molecular mechanism of the sensor response, and 4) the potential of the array to
facilitate identification of novel biomarkers. Successful completion of this work will result in a validated platform
to enable concomitant identification of disease and acceleration of biomarker discovery processes in HGSC, with
applicability to many potential indications.
概括
该项目致力于构建纳米传感器阵列平台技术来检测整个疾病的指纹
患者生物体液,以促进诊断、筛查和生物标志物发现工作。
标记物被广泛用作诊断指标,但许多标记物不足以评估疾病
限制使用大多数生物标志物进行诊断和筛查的主要因素包括其诊断特异性较低。
需要创新的方法来识别分子标记的简化和整体深度。
新的生物标志物和/或在缺乏经过验证的生物标志物的情况下改进筛查和诊断工作。
相信可以通过检测“疾病”来区分患病的生物体液和正常的生物体液
指纹”通过收集分子结合相互作用的大数据集到不同的现代
我们将构建一个传感器阵列组件,用于训练机器学习算法。
重视有机色心(OCC,共价修饰的碳纳米管)来传递细微的差异
凭借足够的多样性,传感器可以区分生物流体中分子的物理化学特性。
在机器学习过程的帮助下,我们发现根据疾病状态来确定液体。
OCC-DNA 纳米传感器库,表现出灵敏且差异化的光谱变化,可探测整体
通过机器学习算法,我们建立了纳米传感器重新预测模型。
可靠地识别高级别浆液性卵巢癌(HGSC)的反应远远好于现有的
使用最初的 264 份患者血清样本(Nat Biomed Eng,
2022)尽管对 HGSC 的理解和管理取得了进展,但目前诊断时的生存率很差
晚期才发现,早期检测并不常见,手术是癌症的一线治疗方法。
70% 的缓解期患者会复发,二次手术可以延长生存期,但前提是尽早进行。
因此,能够改进早期复发和早期 HGSC 的检测。
我们计划开发一个强大的诊断传感器平台来改善早期诊断。
保护卵巢癌和复发,并加速生物标志物的发现过程。
对与传感器结合的蛋白质进行滴定分析可以确定蛋白质吸附响应的独特模式
我们建议,可以针对疾病特异性的光谱响应,从而潜在地促进生物标志物的发现。
研究:1) OCC-DNA 纳米传感器元件分子敏感性的多样性,需要区分
患者样本,2)基于机器学习的疾病分类,重点关注早期复发和
早期 HGSC,3)传感器响应的分子机制,以及 4)阵列的潜力
促进新型生物标志物的识别,成功完成这项工作将产生一个经过验证的平台。
使 HGSC 能够同时识别疾病并加速生物标志物发现过程,
适用于许多潜在的适应症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Alan Heller其他文献
Daniel Alan Heller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Alan Heller', 18)}}的其他基金
Efficacy and pharmacokinetic assessment of renal-targeted therapy in a pig model of cisplatin induced acute kidney injury.
顺铂诱导的急性肾损伤猪模型中肾脏靶向治疗的疗效和药代动力学评估。
- 批准号:
10384209 - 财政年份:2021
- 资助金额:
$ 69.66万 - 项目类别:
Tumor-Selective Delivery Approaches for Medulloblastoma
髓母细胞瘤的肿瘤选择性递送方法
- 批准号:
10543087 - 财政年份:2020
- 资助金额:
$ 69.66万 - 项目类别:
Tumor-Selective Delivery Approaches for Medulloblastoma
髓母细胞瘤的肿瘤选择性递送方法
- 批准号:
10320961 - 财政年份:2020
- 资助金额:
$ 69.66万 - 项目类别:
Renal tubule-specific nanotherapeutics for acute kidney injury
肾小管特异性纳米疗法治疗急性肾损伤
- 批准号:
9982323 - 财政年份:2018
- 资助金额:
$ 69.66万 - 项目类别:
P-selectin-Mediated Targeting of PI3K Nanomedicines to the Tumor Microenvironment
P-选择素介导的 PI3K 纳米药物靶向肿瘤微环境
- 批准号:
10061563 - 财政年份:2017
- 资助金额:
$ 69.66万 - 项目类别:
P-selectin-Mediated Targeting of PI3K Nanomedicines to the Tumor Microenvironment
P-选择素介导的 PI3K 纳米药物靶向肿瘤微环境
- 批准号:
10310486 - 财政年份:2017
- 资助金额:
$ 69.66万 - 项目类别:
Transient Metabolite Detection for Single-Cell Metabolomics and Diagnostics
用于单细胞代谢组学和诊断的瞬时代谢物检测
- 批准号:
8358296 - 财政年份:2012
- 资助金额:
$ 69.66万 - 项目类别:
相似国自然基金
耦合电化学氧化强化电吸附脱盐的双电路系统对微咸水的高效处理机制
- 批准号:52300006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
儿茶酚基导电金属有机框架膜的设计构筑及其对CO2的吸附分离研究
- 批准号:22305211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高能电子束辐射高效定向制备功能共价有机框架材料及其吸附应用研究
- 批准号:12305397
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
室温强氮气吸附材料的构筑及N2/CH4反转分离的研究
- 批准号:22371221
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
高性能多孔液体吸附剂的创制及其强化天然气脱碳机理研究
- 批准号:22308276
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel Nanoparticle Respiratory Tract Mucosal Vaccine
新型纳米颗粒呼吸道粘膜疫苗
- 批准号:
10599198 - 财政年份:2022
- 资助金额:
$ 69.66万 - 项目类别:
Topical and systemic interventions for mustard-induced skin injury
芥末引起的皮肤损伤的局部和全身干预
- 批准号:
10682629 - 财政年份:2021
- 资助金额:
$ 69.66万 - 项目类别:
Identifying the superior ossification pathway for tissue engineered approaches to long bone repair
确定组织工程方法修复长骨的最佳骨化途径
- 批准号:
10591573 - 财政年份:2021
- 资助金额:
$ 69.66万 - 项目类别:
Topical and systemic interventions for mustard-induced skin injury
芥末引起的皮肤损伤的局部和全身干预
- 批准号:
10682629 - 财政年份:2021
- 资助金额:
$ 69.66万 - 项目类别:
Enhancing Epigenetic Analysis Of Rare Cells With Multi-Phase Microfluidics
利用多相微流体增强稀有细胞的表观遗传分析
- 批准号:
10552039 - 财政年份:2020
- 资助金额:
$ 69.66万 - 项目类别: