Computational Analysis and Modeling Core
计算分析和建模核心
基本信息
- 批准号:10617739
- 负责人:
- 金额:$ 13.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAffinityAlgorithmsAlphavirusAnimal ExperimentsAnimal ModelAnimalsAntibodiesAntibody-mediated protectionBindingBiologicalCellsCharacteristicsClinical ResearchCollaborationsComplexComputer AnalysisComputer ModelsComputing MethodologiesDataData AnalysesData SetDisciplineEffector CellEngineeringExperimental DesignsFailureFamilyFilovirusGoalsHumanImmuneImmune responseImmune systemImmunologyImmunotherapeutic agentIndividualInfectionIntuitionKnowledgeLaboratoriesMachine LearningMathematicsMeasurementMethodsModelingModificationMolecularMonoclonal AntibodiesOutcomePre-Clinical ModelPropertyPublicationsRecording of previous eventsResolutionSerologyStatistical Data InterpretationStreamSystemTechniquesTherapeuticTherapeutic UsesTranslatingTranslationsVaccine DesignVaccinesViralVirusVirus DiseasesWorkcomparativecomputer scienceexpectationexperimental analysisfeature selectionglycosylationinsightneglectnoveloperationoutcome predictionpathogenpre-clinicalpredicting responsepreventreceptorsuccesstherapeutic developmenttranslation to humanstranslational modelvaccine strategyvaccinology
项目摘要
CORE C: COMPUTATIONAL ANALYSIS & MODELING CORE – SUMMARY
The objective of the Computational Analysis & Modeling Core C is to deploy, in close partnership with the
Projects, computational methods that can elucidate the multiple, interrelated variables that determine protection
against each virus family, to provide statistically based, experimentally validated computational strategies for
optimizing immunotherapeutic activity. This Core will develop and apply a spectrum of multi-variate mathematical
frameworks to assist the Projects in ascertaining protective correlates in their respective studies, including toward
translation across species. Overall, we will emphasize modeling frameworks in which multiple features are
considered concomitantly for explanation or prediction of responses. In addition, we will evaluate how these
multiple variables interact and the effect of these interactions on determination of the protective correlates.
The efforts and insight provided by Core C will be integrated into the experimental Projects via collaborative
interactions along avenues analogous to what we have done collectively in prior publications that bridge
immunology and vaccinology, including with several of our consortium Project and Core leaders. In Core C Aims
1 and 4, we will work with Project leaders to apply established multi-variate methods to their experimental data
sets. In Aims 2 and 3, we will employ novel methods that are likely to be even more powerful in addressing
important questions arising from these Projects, which cannot be readily addressed by conventional approaches.
Aim 1: To provide computational support for analysis of complex multi-variate data sets generated in the Projects.
Aim 2: To provide a computational modeling framework for facilitating understanding of predictive relationships
of molecular features to cellular effector functions and protection.
Aim 3: To provide a computational modeling framework for facilitating translation of protection correlates across
species.
Aim 4: To provide consultative assistance to the Projects with respect to statistical analyses
As examples, in Projects 2 and 3 substantial efforts will be directed toward optimizing pan-filovirus and pan-
alphavirus mAbs and gaining insights concerning mechanisms of action, based on systems serology
experimental measurements of mAb properties such as: binding to a diverse array of alphaviruses; glycosylation
states; binding to cognate receptors; and elicitation of immune cell effector functions. Since there is no
expectation that a single feature selected from among the dozens analyzed will be predictive of mAb protection,
analysis of these data will require use multi-featured computational models to help establish thresholds of
protection, define features that contribute to protection and Fc modifications beneficial for therapeutic use, and
analyze comparative utility of different animal models.
核心 C:计算分析和建模核心 – 总结
计算分析和建模核心 C 的目标是与
可以阐明决定保护的多个相互关联的变量的项目、计算方法
针对每个病毒家族,提供基于统计、经过实验验证的计算策略
优化免疫治疗活性 该核心将开发和应用一系列多变量数学。
协助项目确定各自研究中的保护相关性的框架,包括
总的来说,我们将强调包含多个特征的建模框架。
此外,我们将同时考虑如何解释或预测这些反应。
多个变量相互作用以及这些相互作用对确定保护相关性的影响。
Core C 提供的努力和见解将通过协作整合到实验项目中
沿着途径进行互动,类似于我们在之前的出版物中共同所做的事情,
免疫学和疫苗学,包括我们的几个联盟项目和核心 C 目标的领导者。
1和4,我们将与项目负责人合作,将既定的多变量方法应用于他们的实验数据
在目标 2 和 3 中,我们将采用可能更有效的新方法来解决问题。
这些项目产生的重要问题无法通过传统方法轻易解决。
目标 1:为项目中生成的复杂多变量数据集的分析提供计算支持。
目标 2:提供一个计算建模框架,以促进对预测关系的理解
分子特征对细胞效应功能和保护的影响。
目标 3:提供一个计算建模框架,以促进保护相关性的转换
物种。
目标 4:为项目提供统计分析方面的咨询援助
例如,在项目 2 和 3 中,大量努力将针对优化泛丝状病毒和泛丝状病毒。
甲病毒单克隆抗体并基于系统血清学获得有关作用机制的见解
mAb 特性的实验测量,例如: 与多种甲病毒的结合;
状态;与同源受体结合;以及引发免疫细胞效应功能。
期望从数十个分析的特征中选择一个特征来预测 mAb 保护,
对这些数据的分析将需要使用多功能计算模型来帮助建立阈值
保护,定义有助于保护的特征和有益于治疗用途的 Fc 修饰,以及
分析不同动物模型的比较效用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DOUGLAS A LAUFFENBURGER其他文献
DOUGLAS A LAUFFENBURGER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DOUGLAS A LAUFFENBURGER', 18)}}的其他基金
Quantitative and functional characterization of therapeutic resistance in cancer
癌症治疗耐药性的定量和功能表征
- 批准号:
10162303 - 财政年份:2017
- 资助金额:
$ 13.4万 - 项目类别:
Quantitative and functional characterization of therapeutic resistance in cancer
癌症治疗耐药性的定量和功能表征
- 批准号:
9925049 - 财政年份:2017
- 资助金额:
$ 13.4万 - 项目类别:
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多场景应用的药物-靶标结合亲和力预测研究
- 批准号:62371403
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 13.4万 - 项目类别:
Diagnostic aptamer reagents to develop multi-analyte blood test for pre-clinical, mild and moderate Alzheimer's disease
诊断适体试剂用于开发针对临床前、轻度和中度阿尔茨海默病的多分析物血液检测
- 批准号:
10597840 - 财政年份:2023
- 资助金额:
$ 13.4万 - 项目类别:
Small Molecule Therapeutics for Sickle Cell Anemia
镰状细胞性贫血的小分子疗法
- 批准号:
10601679 - 财政年份:2023
- 资助金额:
$ 13.4万 - 项目类别:
Quantifying proteins in plasma do democratize personalized medicine for patients with type 1 diabetes
量化血浆中的蛋白质确实使 1 型糖尿病患者的个性化医疗民主化
- 批准号:
10730284 - 财政年份:2023
- 资助金额:
$ 13.4万 - 项目类别:
De novo design of a generalizable protein biosensor platform for point-of-care testing
用于即时测试的通用蛋白质生物传感器平台的从头设计
- 批准号:
10836196 - 财政年份:2023
- 资助金额:
$ 13.4万 - 项目类别: