Interneurons differentially regulate discrete pathways from ventral hippocampus
中间神经元差异调节腹侧海马的离散通路
基本信息
- 批准号:9806339
- 负责人:
- 金额:$ 10.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:Alzheimer&aposs DiseaseAnatomyAnimalsAreaAttenuatedAwardBRAIN initiativeBehaviorBehavioralBinding ProteinsBrain DiseasesBrain regionCellsChronicChronic stressCognitionComplexDevelopment PlansDiseaseES Cell LineEducational workshopElectrophysiology (science)EmotionsEnsureEquilibriumFiberFunctional disorderFundingGoalsHalorhodopsinsHippocampus (Brain)InstitutionInterneuronsLabelLaboratoriesLeadLoxP-flanked alleleMapsMedialMediatingMental disordersMentorsMetabolicModelingMusNeurobehavioral ManifestationsNeurodegenerative DisordersNeurodevelopmental DisorderNeuronsNeuropeptidesNeurophysiology - biologic functionNucleus AccumbensParkinson DiseaseParvalbuminsPathway interactionsPatternPhotometryPhysiologyPopulationPredisposing FactorPrefrontal CortexPreventionPrevention strategyProcessPyramidal CellsRegulationReporterResearchResearch PersonnelRhodopsinRisk FactorsRodent ModelSchizophreniaScientistSomatostatinStressStructureSubstance abuse problemSymptomsSynapsesSynaptic CleftTechniquesTestingTimeTrainingTransplantationViral VectorVirusVocational GuidanceWorkcareer developmenteffective therapyexperimental studyextracellularhippocampal pyramidal neuronimprovedin vivoinformation processinginsightmeetingsnervous system disorderneural circuitneurobiological mechanismneuronal circuitrynovel strategiesoptogeneticspsychological stressorreconstitutionresponseskillsstressorsymposiumtreatment strategy
项目摘要
Hippocampal microcircuits are comprised of excitatory pyramidal cells, which integrate information and innervate
downstream brain regions, and inhibitory interneurons, which function locally to regulate pyramidal cell activity
and synchronicity. In the ventral hippocampus (vHipp), microcircuit dysfunction has been associated with a
variety of neurological disorders, including neurodegenerative diseases, neurodevelopmental disorders, and
psychiatric illnesses. Previous work has demonstrated that vHipp pyramidal cells differentially regulate
schizophrenia-like behaviors depending on their downstream target. Similarly, unique classes of inhibitory
interneurons (namely parvalbumin (PV)-positive and somatostatin(SST)-positive) also differently regulate
schizophrenia-like behaviors. Therefore, the hypothesis of the current proposal is that PV- and SST-positive
interneurons differentially regulate the function of ventral hippocampus pyramidal cells depending on their
projection target. In the first aim, mammalian reconstitution across synaptic partners (mGRASP) will be used to
test the hypothesis that PV- and SST-positive interneurons differentially innervate vHipp pyramidal cells
depending on their target (i.e. the NAc or mPFC). In the second aim, fiber photometry, in vivo electrophysiology,
and optogenetics will be used to test the functional regulation of NAc vs mPFC projecting vHipp neurons by PV-
and SST-positive interneurons. Aim 3 will determine if microcircuit anatomy and function are altered by chronic
stress, a predisposing factor for many neurological disorders. In line with the goals of the BRAIN Initiative, the
results will provide insight into basic principles of neural circuit function and may lead to new strategies for the
treatment and prevention of devastating neurological disorders.
My long-term goal is to become an independent scientist that studies the neurobiological mechanisms
underlying psychiatric disorders so that new and more effective treatments can be developed. The research plan
described above will be supplemented by a career development plan that will allow me to gain the skills
necessary to achieve this goal. Specifically, I have assembled a team of mentors from both in and outside of my
institution to provide scientific training and career guidance. Further, I will attend local and national conferences,
workshops, and meetings to enhance my training and ensure that I gain the skills requisite of an independent
investigator. Together, this award will provide me with scientific training and career development opportunities,
and importantly it will allow me to establish my own, independent line of research, which will focus on the effect
of chronic stress on vHipp microcircuits.
海马微电路由兴奋性锥体细胞组成,可整合信息并神经支配
下游大脑区域和抑制性中间神经元,其局部功能调节锥体细胞活动
和同步性。在腹侧海马 (vHipp) 中,微电路功能障碍与
各种神经系统疾病,包括神经退行性疾病、神经发育障碍和
精神疾病。先前的工作表明 vHipp 锥体细胞差异调节
类似精神分裂症的行为取决于其下游目标。同样,独特的抑制类别
中间神经元(即小白蛋白(PV)阳性和生长抑素(SST)阳性)也有不同的调节
类似精神分裂症的行为。因此,当前提案的假设是 PV 和 SST 为正值
中间神经元根据其差异调节腹侧海马锥体细胞的功能
投影目标。在第一个目标中,哺乳动物跨突触伙伴的重建(mGRASP)将用于
检验 PV 和 SST 阳性中间神经元差异支配 vHipp 锥体细胞的假设
取决于他们的目标(即 NAc 或 mPFC)。第二个目标是纤维光度测定、体内电生理学、
光遗传学将用于测试 PV-NAc 与 mPFC 投射 vHipp 神经元的功能调节
和 SST 阳性中间神经元。目标 3 将确定微电路解剖结构和功能是否因慢性病而改变
压力,是许多神经系统疾病的诱发因素。根据 BRAIN Initiative 的目标,
结果将深入了解神经回路功能的基本原理,并可能带来新的策略
治疗和预防破坏性神经系统疾病。
我的长期目标是成为一名研究神经生物学机制的独立科学家
潜在的精神疾病,以便开发新的、更有效的治疗方法。研究计划
上述描述将辅以职业发展计划,使我能够获得技能
实现这一目标所必需的。具体来说,我组建了一支由来自国内外的导师组成的团队
机构提供科学的培训和职业指导。此外,我将参加地方和全国会议,
研讨会和会议,以加强我的培训并确保我获得独立工作所需的技能
研究者。总之,这个奖项将为我提供科学培训和职业发展机会,
重要的是,它将使我能够建立自己的独立研究路线,重点关注效果
vHipp 微电路的慢性压力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Donegan其他文献
Jennifer Donegan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Donegan', 18)}}的其他基金
Interneurons differentially regulate discrete pathways from ventral hippocampus
中间神经元差异调节腹侧海马的离散通路
- 批准号:
10434157 - 财政年份:2021
- 资助金额:
$ 10.86万 - 项目类别:
Interneurons differentially regulate discrete pathways from ventral hippocampus
中间神经元差异调节腹侧海马的离散通路
- 批准号:
10392564 - 财政年份:2021
- 资助金额:
$ 10.86万 - 项目类别:
Interneurons differentially regulate discrete pathways from ventral hippocampus
中间神经元差异调节腹侧海马的离散通路
- 批准号:
10616351 - 财政年份:2021
- 资助金额:
$ 10.86万 - 项目类别:
Interneurons differentially regulate discrete pathways from ventral hippocampus
中间神经元差异调节腹侧海马的离散通路
- 批准号:
10634672 - 财政年份:2021
- 资助金额:
$ 10.86万 - 项目类别:
相似国自然基金
基于充分降维方法的复杂疾病多层次调控模型研究
- 批准号:82304239
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抑制性tRNA(suppressor tRNA, sup-tRNA)通读CFTR无义突变治疗囊性纤维化疾病小鼠的研究
- 批准号:82370099
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
SVCI疾病进展中多尺度脑结构-功能耦合演变规律的研究
- 批准号:82302142
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新的先天性甲减致病基因CNTN6突变导致疾病的发生及其机制研究
- 批准号:82301943
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于纸基微流控芯片的食源性疾病致病因子即时检测技术研究
- 批准号:22304022
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Ultra-precision clinical imaging and detection of Alzheimers Disease using deep learning
使用深度学习进行超精密临床成像和阿尔茨海默病检测
- 批准号:
10643456 - 财政年份:2023
- 资助金额:
$ 10.86万 - 项目类别:
Patient specific computational modeling of fluid-structure interactions of cerebrospinal fluid for biomarkers in Alzheimer's disease
阿尔茨海默病生物标志物脑脊液流固相互作用的患者特定计算模型
- 批准号:
10644281 - 财政年份:2023
- 资助金额:
$ 10.86万 - 项目类别:
Neuroprotective Potential of Vaccination Against SARS-CoV-2 in Nonhuman Primates
SARS-CoV-2 疫苗对非人灵长类动物的神经保护潜力
- 批准号:
10646617 - 财政年份:2023
- 资助金额:
$ 10.86万 - 项目类别:
Development of CM-CS1 CAR Treg to Treat Amyotrophic Lateral Sclerosis (ALS)
开发 CM-CS1 CAR Treg 治疗肌萎缩侧索硬化症 (ALS)
- 批准号:
10696512 - 财政年份:2023
- 资助金额:
$ 10.86万 - 项目类别:
Shape-based personalized AT(N) imaging markers of Alzheimer's disease
基于形状的个性化阿尔茨海默病 AT(N) 成像标记
- 批准号:
10667903 - 财政年份:2023
- 资助金额:
$ 10.86万 - 项目类别: