Ultra-precision clinical imaging and detection of Alzheimers Disease using deep learning
使用深度学习进行超精密临床成像和阿尔茨海默病检测
基本信息
- 批准号:10643456
- 负责人:
- 金额:$ 13.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-15 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAgingAlzheimer disease detectionAlzheimer&aposs DiseaseAlzheimer&aposs disease diagnosisAnatomyAtrophicAwardBiological ModelsBrainBrain imagingBrain scanClinicalClinical DataClinical ResearchClinical TrialsCommunitiesCompensationComputer softwareConsumptionDataData SetDetectionDiseaseDisease modelEarly DiagnosisEarly InterventionEnsureExposure toFunctional disorderGoalsHumanImageImage AnalysisImaging DeviceIndividualLearningLongitudinal cohortMRI ScansMagnetic Resonance ImagingManufacturerMasksMassachusettsMethodsModalityMotionNeuroanatomyNeurodegenerative DisordersNeurologyNeurosciencesNoisePhasePhysicsProcessProtocols documentationRegional AnatomyRelaxationResearchScanningScheduleSensitivity and SpecificitySerial Magnetic Resonance ImagingSiteStructureStudy SubjectSupervisionSurrogate EndpointTimeTrainingTraining ProgramsTreatment Efficacyclinical imagingcomputerized toolscontrast imagingcraniumdeep learningdeep neural networkdenoisingdesignhealth care qualityimage processingimage registrationimaging Segmentationimaging modalityimprovedinsightinterestlongitudinal analysismorphometrynervous system disorderneural networkneuroimagingserial imagingsimulationskillsspatiotemporalsupervised learningtool
项目摘要
PROJECT SUMMARY AND ABSTRACT
In Alzheimer’s Disease (AD) studies, longitudinal within-subject imaging and analysis of the human brain gives
us valuable insight into the temporal dynamics of the early disease process in individual subjects and allows to
assess therapeutic efficacy. However, longitudinal imaging tools have not yet been optimized for clinical studies
or for use on nonharmonized scans. Challenges include reduction of noise across serial magnetic resonance
imaging (MRI) scans while weighting each time point equally to avoid biases; and appropriately accounting for
atrophy all in the presence of varying image intensity, contrasts, MR distortions and subject motion across time.
Many general tools exist for detecting longitudinal change in carefully curated research data (such as ADNI)
in which the scan protocol has been harmonized across acquisition sites so as to minimize differential distortion
and gradient nonlinearities removed prior to data release. Unfortunately, these tools do not work accurately for
unharmonized MRI scans that comprise the bulk of the research data available, and on clinical data, where the
practical need for clinicians to schedule a subject on different scanners leads to additional differences in scans
acquired across multiple scan sessions. For retrospective analysis of past scans or clinical use, it is thus critical
to develop imaging tools that are agnostic to global scanner-induced differences in images but very sensitive to
subtle neuroanatomical change, such as atrophy in AD, that is highly predictive of the early disease process.
To address the above issues, we propose to design, implement and validate a deep learning (DL) AD image
analysis framework for detecting neuroanatomical change in the presence of large image differences due to the
acquisition process itself, including the field strength, receive coil, sequence parameters, gradient nonlinearities
and B0 distortions, scanner manufacturer, and subject motion in the images across time. We leverage the fact
that, within a subject, there is a physical deformation that relates the brain scans acquired across time unlike the
cross-subject case. Focusing exclusively on longitudinal within-subject studies allows us to craft ultra-sensitive
registration and change detection tools that drastically outperform general purpose ones used in cross-subject
studies, where registration is intended only to find approximate anatomical correspondences. Our longitudinal
imaging framework is thus able to learn to disentangle true neuroanatomical change from irrelevant distortions.
Since the applicant has a computational background, the proposed training program at Harvard, MIT and
MGH will focus on neuroscience and neurology during the K99 phase to develop the skills needed to transition
to independence in the R00 phase. The applicant aims to become an expert in clinical imaging of AD and push
the limits of what is currently possible in AD research, fundamentally enhancing the quality of healthcare. We
believe that the proposed project is a first step in this direction and the tools developed will further pave the way
for clinical imaging and analysis of AD and neurodegenerative disease processes in general.
项目概要和摘要
在阿尔茨海默病 (AD) 研究中,对人脑的纵向受试者内成像和分析给出了
我们对个体受试者早期疾病过程的时间动态有宝贵的见解,并允许
然而,纵向治疗成像工具尚未针对临床研究进行优化。
或用于非协调扫描的挑战包括减少串行磁共振的噪声。
成像 (MRI) 扫描,同时对每个时间点进行同等加权以避免偏差并适当考虑;
在图像强度、对比度、MR 失真和对象随时间运动变化的情况下,所有这些都会发生萎缩。
有许多通用工具可用于检测精心策划的研究数据的纵向变化(例如 ADNI)
其中扫描协议已在各个采集站点之间进行协调,以最大程度地减少差异失真
不幸的是,这些工具不能准确地工作。
不统一的 MRI 扫描包含大量可用的研究数据和临床数据,其中
主教在不同扫描仪上安排主题的实际需要导致扫描结果存在额外差异
因此,对于过去扫描或临床使用的回顾性分析至关重要。
开发成像工具,该工具对全局扫描仪引起的图像差异不可知,但对
微妙的神经解剖学变化,例如 AD 中的萎缩,可以高度预测早期疾病过程。
为了解决上述问题,我们建议设计、实现和验证深度学习(DL)AD图像
用于检测由于存在大图像差异而导致的神经解剖学变化的分析框架
采集过程本身,包括场强、接收线圈、序列参数、梯度非线性
和 B0 失真、扫描仪制造商以及图像中随时间变化的主体运动。
在一个受试者体内,存在一种与随时间推移获得的脑部扫描相关的物理变形,这与
专注于纵向的学科内研究使我们能够制作出超敏感的案例。
注册和变更检测工具的性能远远优于跨主题中使用的通用工具
研究,配准的目的只是为了找到我们的纵向的近似解剖学对应关系。
因此,成像框架能够学习将真正的神经解剖学变化与不相关的扭曲分开。
由于申请人具有计算背景,拟议的哈佛大学、麻省理工学院和麻省理工学院的培训计划
MGH 将在 K99 阶段重点关注神经科学和神经病学,以培养过渡所需的技能
申请人的目标是成为AD临床影像专家并推动R00阶段的独立。
突破目前 AD 研究的局限性,从根本上提高医疗保健质量。
相信拟议的项目是朝这个方向迈出的第一步,开发的工具将进一步铺平道路
用于 AD 和神经退行性疾病过程的临床成像和分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sean Isaac Young其他文献
Sean Isaac Young的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Bayesian approaches to identify persons with osteoarthritis in electronic health records and administrative health data in the absence of a perfect reference standard
在缺乏完美参考标准的情况下,贝叶斯方法在电子健康记录和管理健康数据中识别骨关节炎患者
- 批准号:
10665905 - 财政年份:2023
- 资助金额:
$ 13.39万 - 项目类别:
The impact of bilingualism on cognitive reserve/resilience using socio-demographically and linguistically diverse populations
双语对社会人口和语言多样化人群的认知储备/弹性的影响
- 批准号:
10584245 - 财政年份:2023
- 资助金额:
$ 13.39万 - 项目类别:
A Next Generation Data Infrastructure to Understand Disparities across the Life Course
下一代数据基础设施可了解整个生命周期的差异
- 批准号:
10588092 - 财政年份:2023
- 资助金额:
$ 13.39万 - 项目类别:
Characterizing Alzheimers Disease and Serious Mental Illness Co-Occurrence Among Nursing Home Residents and Relationship to Symptomatology and Care Practices
疗养院居民中阿尔茨海默病和严重精神疾病同时发生的特征及其与症状学和护理实践的关系
- 批准号:
10601879 - 财政年份:2023
- 资助金额:
$ 13.39万 - 项目类别: