DEVELOPMENT OF COMPUTER BASED TECHNIQUES IN MAMMOGRAPHY
乳房X线照相术中基于计算机的技术的发展
基本信息
- 批准号:2376830
- 负责人:
- 金额:$ 38.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1989
- 资助国家:美国
- 起止时间:1989-05-03 至 2001-02-28
- 项目状态:已结题
- 来源:
- 关键词:artificial intelligence breast neoplasm /cancer diagnosis breast neoplasms computational neuroscience computer assisted diagnosis computer assisted medical decision making computer program /software diagnosis design /evaluation diagnosis quality /standard digital imaging image processing mammography mathematical model
项目摘要
The goal of the proposed research is to develop computer-aided diagnosis
(CAD) schemes in order to improve the diagnostic accuracy of breast cancer
in mammography. Four specific aims are included: (l) development of
computer programs for the detection and characterization of
microcalcifications, (2) development of computer programs for detection
and characterization of masses, (3) implementation of the CAD algorithms
in a dedicated workstation to perform a pilot preclinical testing of the
accuracy of the CAD programs, and (4) evaluation of the effects of the CAD
schemes on radiologists' performance. The proposed CAD schemes will aid
radiologists in screening mammograms for suspicious lesions and provide
estimate of the likelihood of malignancy for the detected lesions. The
information is expected to reduce the miss rate and to improve the
positive predictive value of the mammographic findings.
A data base of clinical mammograms which include malignant and benign
microcalcifications and masses will be established. Physical measures
which characterize the significant image features of the lesions will be
developed. Based on these measures, linear discriminant classifiers or
neural network classifiers will be optimized using a genetic algorithm
approach to classify true and false signals and to estimate the likelihood
of malignancy for each type of lesions.
For automated detection and classification of microcalcifications, we will
investigate the usefulness of multiresolution analysis for enhancement of
the signal-to-noise ratio of the microcalcifications and for improvement
of feature extraction techniques. Physical characteristics such as size,
shape, frequency spectrum, spatial distribution, clustering properties,
and texture features will be extracted and analyzed with the classifiers.
For automated detection and classification of masses, we will improve the
background correction and signal segmentation techniques, and develop
effective false-positive reduction methods. Adaptive filtering, edge
enhancement, and clustering segmentation methods will be developed for
extraction of the mass margins. Physical characteristics such as size,
density, edge sharpness, calcifications, shape, lobulation, spiculation,
and multiresolution wavelet texture features will be extracted from the
masses and analyzed with the classifiers.
The algorithms will be implemented in a dedicated CAD workstation and
preclinical testing will be conducted. The performance of the programs in
a clinical setting will be assessed. The algorithms will be revised and
improved based on the information obtained with the preclinical testing.
The study is a vital step for the development of a clinically reliable CAD
scheme.
Observer performance studies using receiver operating characteristic (ROC)
methodology will be conducted to evaluate the effects of the CAD schemes
on radiologists'performance.
拟议研究的目的是开发计算机辅助诊断
(CAD)方案以提高乳腺癌的诊断准确性
在乳房X线摄影。包括四个具体目标:(l)开发
用于检测和表征的计算机程序
微钙化,(2)开发计算机程序检测
和质量的表征,(3)CAD算法的实现
在专门的工作站中,以进行飞行员的临床前测试
CAD程序的准确性以及(4)评估CAD的影响
放射学家表现方案。拟议的CAD方案将有助于
放射科医生在筛查可疑病变的乳房X线照片并提供
估计检测病变的恶性肿瘤的可能性。这
预计信息将降低错过率并改善
乳腺X线摄影结果的正预测价值。
临床乳房X线照片的数据库,包括恶性和良性
将建立微钙化和质量。身体措施
哪些特征是病变的重要图像特征
发达。基于这些措施,线性判别分类器或
神经网络分类器将使用遗传算法进行优化
对真实和错误信号进行分类并估算可能性的方法
每种类型病变的恶性肿瘤。
为了自动检测和微钙化分类,我们将
研究多分析分析的有用性
微钙化的信噪比和改进
特征提取技术。物理特征,例如大小
形状,频谱,空间分布,聚类特性,
和分类器将提取和分析纹理功能。
对于自动检测和质量分类,我们将改善
背景校正和信号分割技术,并发展
有效的假阳性还原方法。自适应过滤,边缘
将开发增强和聚类分割方法
提取质量边缘。物理特征,例如大小
密度,边缘清晰度,钙化,形状,小叶,杂音,
并从
群众并与分类器进行分析。
该算法将在专用的CAD工作站中实施,并且
将进行临床前测试。程序在
将评估临床环境。该算法将进行修订,并
根据临床前测试获得的信息得到改进。
该研究是开发临床可靠CAD的重要步骤
方案。
使用接收器操作特征(ROC)的观察者绩效研究
将进行方法来评估CAD方案的影响
关于放射科医生的表现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HEANG-PING CHAN其他文献
HEANG-PING CHAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HEANG-PING CHAN', 18)}}的其他基金
Advanced breast tomosynthesis reconstruction for improved cancer diagnosis
先进的乳房断层合成重建可改善癌症诊断
- 批准号:
10323267 - 财政年份:2018
- 资助金额:
$ 38.84万 - 项目类别:
Improvement of microcalcification detection in digital breast tomosynthesis
数字乳腺断层合成中微钙化检测的改进
- 批准号:
8327742 - 财政年份:2011
- 资助金额:
$ 38.84万 - 项目类别:
Improvement of microcalcification detection in digital breast tomosynthesis
数字乳腺断层合成中微钙化检测的改进
- 批准号:
8514397 - 财政年份:2011
- 资助金额:
$ 38.84万 - 项目类别:
Improvement of microcalcification detection in digital breast tomosynthesis
数字乳腺断层合成中微钙化检测的改进
- 批准号:
8108142 - 财政年份:2011
- 资助金额:
$ 38.84万 - 项目类别:
Computer-aided detection of non-calcified plaques in coronary CT angiograms
冠状动脉 CT 血管造影中非钙化斑块的计算机辅助检测
- 批准号:
8206668 - 财政年份:2010
- 资助金额:
$ 38.84万 - 项目类别:
Computer-aided detection of non-calcified plaques in coronary CT angiograms
冠状动脉 CT 血管造影中非钙化斑块的计算机辅助检测
- 批准号:
8392109 - 财政年份:2010
- 资助金额:
$ 38.84万 - 项目类别:
Computer-aided detection of non-calcified plaques in coronary CT angiograms
冠状动脉 CT 血管造影中非钙化斑块的计算机辅助检测
- 批准号:
8032999 - 财政年份:2010
- 资助金额:
$ 38.84万 - 项目类别:
Computer-aided detection of non-calcified plaques in coronary CT angiograms
冠状动脉 CT 血管造影中非钙化斑块的计算机辅助检测
- 批准号:
8586273 - 财政年份:2010
- 资助金额:
$ 38.84万 - 项目类别:
Digital Tomosynthesis Mammography: Computer-Aided Analysis of Masses
数字断层合成乳房X线摄影:计算机辅助肿块分析
- 批准号:
7498781 - 财政年份:2006
- 资助金额:
$ 38.84万 - 项目类别:
Digital Tomosynthesis Mammography: Computer-Aided Analysis of Masses
数字断层合成乳房X线摄影:计算机辅助肿块分析
- 批准号:
7080103 - 财政年份:2006
- 资助金额:
$ 38.84万 - 项目类别:
相似海外基金
Hawaii Pacific Islands Mammography Registry
夏威夷太平洋岛屿乳腺X线摄影登记处
- 批准号:
10819068 - 财政年份:2023
- 资助金额:
$ 38.84万 - 项目类别:
Breast core-needle diagnostics in LMICs via millifluidics and direct-to-digital imaging: development and validation in Ghana
通过微流体和直接数字成像对中低收入国家进行乳腺空心针诊断:在加纳进行开发和验证
- 批准号:
10416550 - 财政年份:2023
- 资助金额:
$ 38.84万 - 项目类别:
Early Detection of Pancreatic Cancer with Human-in-the-Loop Deep Learning
通过人在环深度学习早期检测胰腺癌
- 批准号:
10592060 - 财政年份:2023
- 资助金额:
$ 38.84万 - 项目类别:
Integrating Clinical, Pathologic, and Immune Features to Predict Breast Cancer Recurrence and Chemotherapy Benefit
整合临床、病理和免疫特征来预测乳腺癌复发和化疗获益
- 批准号:
10723924 - 财政年份:2023
- 资助金额:
$ 38.84万 - 项目类别:
Image-based risk assessment to identify women at high-risk for breast cancer
基于图像的风险评估可识别乳腺癌高危女性
- 批准号:
10759110 - 财政年份:2023
- 资助金额:
$ 38.84万 - 项目类别: