Improvement of microcalcification detection in digital breast tomosynthesis

数字乳腺断层合成中微钙化检测的改进

基本信息

  • 批准号:
    8327742
  • 负责人:
  • 金额:
    $ 62.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-02 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Screening mammography has limited sensitivity and specificity. Digital Breast Tomosynthesis (DBT) is an emerging modality that has been shown to significantly improve the detection and characterization of soft- tissue lesions. However, initial studies have shown that subtle microcalcification (MC) clusters, which are often the only sign of early breast cancer, can be difficult to visualize in DBT. Some have suggested that DBT be used in parallel with FFDM in screening, (i.e., adding one- or two-view DBT to the two-view FFDMs so that FFDM could be used for MC detection while DBT could be used for mass detection). This approach would increase imaging costs, reading time, and patient dose, which are all major concerns with regards to introducing DBT into clinical practice. The main goal of the proposed Partnership between the University of Michigan Computer-Aided Diagnosis Research Laboratory (UM) and GE Global Research (GE) is to develop an integrated practical approach to resolving the MC visualization and detection problems in DBT without increasing patient dose, thereby facilitating the eventual replacement of FFDM by DBT. To achieve this goal, we propose two Specific Aims: (SA1) to develop specially designed MC enhancing methods to improve human and machine visualization of MCs in DBT and develop a computer-aided detection (CAD) system to highlight significant MC clusters, and (SA2) to implement the developed MC-enhancing and CAD reading tools in a DBT workstation and conduct observer performance studies to compare MC detection in DBT with that in FFDM. The following tasks will be conducted to accomplish the specific aims: (1) perform phantom studies to determine the best set of image acquisition parameters for data collection, (2) collect a database of human subject DBTs for development of algorithms and observer study, (3) develop lesion-specific reconstruction and MC enhancing methods to improve the visibility of MCs in DBT for radiologist's reading and computerized detection, (4) develop computer-vision methods to detect MC candidates, (5) develop MC analysis method to reduce false positives (FPs) and insignificant CAD marks, (6) design two-view analysis to further reduce FPs, (7) study dependence of MC detection on reconstruction methods and tomosynthesis acquisition parameters, and (8) design a DBT workstation implemented with the MC-enhancing and CAD- assisted tools to highlight significant MCs for radiologist's reading. We hypothesize that the specially designed DBT display system can assist radiologists in detection of MCs in DBT with accuracy at least comparable to that in FFDM. To test this hypothesis, we will (9) conduct observer ROC studies to compare the detection accuracy of MCs under three conditions: (a) two-view DBT without CAD vs. two-view FFDM without CAD, (b) two-view DBT with CAD vs. two-view FFDM with CAD, and (c) a special protocol of CC-view FFDM plus MLO-view DBT with CAD vs. two-view FFDM with CAD.
描述(由申请人提供):筛查乳房X线摄影的灵敏度和特异性有限。数字乳房断层合成(DBT)是一种新兴形态,已证明可以显着改善软组织病变的检测和表征。然而,初步研究表明,通常是早期乳腺癌的唯一迹象的微妙微钙化(MC)簇可能很难在DBT中可视化。有些人建议在筛选中与FFDM并行使用DBT(即,在两视频FFDMS中添加一或两视图DBT,以便可以将FFDM用于MC检测,而DBT可以使用DBT进行质量检测)。这种方法将增加成像成本,阅读时间和患者剂量,这都是将DBT引入临床实践的主要问题。密歇根大学计算机辅助诊断研究实验室(UM)和GE全球研究(GE)之间提议的合作伙伴关系的主要目标是开发一种综合的实用方法,以解决DBT中MC可视化和检测问题而不增加患者剂量的情况,从而促进DBT最终替换FFDM。 To achieve this goal, we propose two Specific Aims: (SA1) to develop specially designed MC enhancing methods to improve human and machine visualization of MCs in DBT and develop a computer-aided detection (CAD) system to highlight significant MC clusters, and (SA2) to implement the developed MC-enhancing and CAD reading tools in a DBT workstation and conduct observer performance studies to compare MC detection in DBT with that in FFDM.将执行以下任务以完成具体目的:(1)执行幻象研究以确定数据收集数据的最佳图像获取参数集,(2)收集人类受试者DBT的数据库,用于开发算法和观察者研究,(3)开发病变特定的重建和MC提高MC的启用MC的视野(DBT),以提高MC的启动(DBT)。 computer-vision methods to detect MC candidates, (5) develop MC analysis method to reduce false positives (FPs) and insignificant CAD marks, (6) design two-view analysis to further reduce FPs, (7) study dependence of MC detection on reconstruction methods and tomosynthesis acquisition parameters, and (8) design a DBT workstation implemented with the MC-enhancing and CAD- assisted tools to highlight放射科医生阅读的重要MC。我们假设特殊设计的DBT显示系统可以帮助放射科医生在DBT中检测到MC,至少与FFDM中的MC相当。为了检验这一假设,我们(9)将(9)进行观察者ROC研究,以比较三个条件下MC的检测准确性:(a)不带CAD的两种视图DBT与没有CAD的两种观察FFDM,((b)与CAD vss vss cad ffdm fiew fiew ffdm fiew fiew fffdm cad dbt cad db fff cad db cad db fff fff fff fff fff。与带有CAD的两视频FFDM。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HEANG-PING CHAN其他文献

HEANG-PING CHAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HEANG-PING CHAN', 18)}}的其他基金

Advanced breast tomosynthesis reconstruction for improved cancer diagnosis
先进的乳房断层合成重建可改善癌症诊断
  • 批准号:
    10323267
  • 财政年份:
    2018
  • 资助金额:
    $ 62.87万
  • 项目类别:
Improvement of microcalcification detection in digital breast tomosynthesis
数字乳腺断层合成中微钙化检测的改进
  • 批准号:
    8514397
  • 财政年份:
    2011
  • 资助金额:
    $ 62.87万
  • 项目类别:
Improvement of microcalcification detection in digital breast tomosynthesis
数字乳腺断层合成中微钙化检测的改进
  • 批准号:
    8108142
  • 财政年份:
    2011
  • 资助金额:
    $ 62.87万
  • 项目类别:
Computer-aided detection of non-calcified plaques in coronary CT angiograms
冠状动脉 CT 血管造影中非钙化斑块的计算机辅助检测
  • 批准号:
    8206668
  • 财政年份:
    2010
  • 资助金额:
    $ 62.87万
  • 项目类别:
Computer-aided detection of non-calcified plaques in coronary CT angiograms
冠状动脉 CT 血管造影中非钙化斑块的计算机辅助检测
  • 批准号:
    8392109
  • 财政年份:
    2010
  • 资助金额:
    $ 62.87万
  • 项目类别:
Computer-aided detection of non-calcified plaques in coronary CT angiograms
冠状动脉 CT 血管造影中非钙化斑块的计算机辅助检测
  • 批准号:
    8032999
  • 财政年份:
    2010
  • 资助金额:
    $ 62.87万
  • 项目类别:
Computer-aided detection of non-calcified plaques in coronary CT angiograms
冠状动脉 CT 血管造影中非钙化斑块的计算机辅助检测
  • 批准号:
    8586273
  • 财政年份:
    2010
  • 资助金额:
    $ 62.87万
  • 项目类别:
Digital Tomosynthesis Mammography: Computer-Aided Analysis of Masses
数字断层合成乳房X线摄影:计算机辅助肿块分析
  • 批准号:
    7498781
  • 财政年份:
    2006
  • 资助金额:
    $ 62.87万
  • 项目类别:
Digital Tomosynthesis Mammography: Computer-Aided Analysis of Masses
数字断层合成乳房X线摄影:计算机辅助肿块分析
  • 批准号:
    7080103
  • 财政年份:
    2006
  • 资助金额:
    $ 62.87万
  • 项目类别:
Digital Tomosynthesis Mammography: Computer-Aided Analysis of Masses
数字断层合成乳房X线摄影:计算机辅助肿块分析
  • 批准号:
    7500088
  • 财政年份:
    2006
  • 资助金额:
    $ 62.87万
  • 项目类别:

相似国自然基金

基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
  • 批准号:
    52378011
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
社交网络上观点动力学的重要影响因素与高效算法
  • 批准号:
    62372112
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
  • 批准号:
    72372021
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
  • 批准号:
    72372070
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
算法鸿沟影响因素与作用机制研究
  • 批准号:
    72304017
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 62.87万
  • 项目类别:
New Algorithms for Cryogenic Electron Microscopy
低温电子显微镜的新算法
  • 批准号:
    10543569
  • 财政年份:
    2023
  • 资助金额:
    $ 62.87万
  • 项目类别:
Previvors Recharge: A Resilience Program for Cancer Previvors
癌症预防者恢复活力计划:癌症预防者恢复力计划
  • 批准号:
    10698965
  • 财政年份:
    2023
  • 资助金额:
    $ 62.87万
  • 项目类别:
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
  • 批准号:
    10699190
  • 财政年份:
    2023
  • 资助金额:
    $ 62.87万
  • 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
  • 批准号:
    10656110
  • 财政年份:
    2023
  • 资助金额:
    $ 62.87万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了