Chemical Biology of the Visual Pigments
视觉颜料的化学生物学
基本信息
- 批准号:10566896
- 负责人:
- 金额:$ 48.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:ARRB1 geneAccelerationAddressAffectAgonistAntibodiesArchitectureBindingBiochemicalBiological AssayBiologyChemicalsChemistryComplexConeCrystallographyDark AdaptationDependenceDetergentsDeuteriumDevelopmentDiseaseGasesGleanHeartHumanHydrolysisIn VitroIsomerismIsotopesKineticsKnockout MiceKnowledgeLibrariesLightLight AdaptationsLipidsMass Spectrum AnalysisMembraneMembrane ProteinsMethodologyMethodsMicellesModelingMolecularMolecular ConformationMusMutagenesisNatural regenerationNatureOcular PhysiologyOpsinPenetrationPharmacodynamicsPhasePhospholipidsPhotobleachingPhotochemistryPhotonsPhototransductionPhysiologicalPhysiologyPigmentsPlayProcessPropertyProtein ConformationProteinsReactionResearchRetinaRetinal ConeRetinal DiseasesRetinal PigmentsRetinaldehydeRhodopsinRod Outer SegmentsRoleSamplingSchiff BasesSeriesSignal TransductionStimulusStructureStructure-Activity RelationshipSurfaceTechniquesTestingTimeVertebrate PhotoreceptorsVisionVisualabsorptionchromophorecis trans isomerizationexperienceexperimental studyextracellularin vivoinsightinterestmetarhodopsinmouse modelmutantnanobodiesnovelnovel strategiespharmacokinetics and pharmacodynamicspharmacologicphotoactivationreceptorregenerativeresponsesensorsmall moleculesmall molecule therapeuticsstructural biologytherapeutic candidatetoolvisual cycle
项目摘要
ABSTRACT: Visual pigments initiate the human visual experience, making them of great physiological interest,
and also are affected in retinal diseases. Accordingly, numerous research efforts have been devoted to
characterizing their structure-function relationships. Despite these efforts, critical gaps remain in our
understanding of visual pigment photochemistry and signaling properties. Knowledge of this fundamental visual
physiology is necessary to make accelerated progress in developing treatments for associated retinopathies. At
the heart of all visual pigments is a retinaldehyde chromophore that undergoes a cis-trans isomerization upon
absorption of a photon of a suitable wavelength. This complex reaction, which proceeds through several
photointermediates, triggers the conformational changes necessary for the propagation of a light stimulus into a
biochemical response. This photoactivation process ends with the hydrolysis and release of retinaldehyde, which
is required for renewal of the receptor light-sensitive state and hence continuous visual function. Fundamental
questions remain regarding receptor structure, mechanisms and modulators of hydrolysis of the retinaldehyde
Schiff base, and the modes of interaction of small molecule therapeutic candidates.
Here, we will pursue four specific aims that employ newly developed tools and approaches that we believe will
overcome previously insurmountable experimental challenges. 1) Elucidate structures of rhodopsin
photointermediates stabilized by nanobodies. Using a novel series of camelid antibodies that arrest the
rhodopsin photocycle, we will perform a detailed structure-function characterization of metarhodopsin
intermediates. 2) Define the kinetics of hydrolysis of the retinaldehyde chromophores of rhodopsin and cone
opsin pigments in native membranes. We have developed a novel mass spectrometry-based method that can,
for the first time, directly detect the retinal conjugation state of visual pigments in native membranes; we will
use this method to determine key rate constants necessary to model the interplay between visual pigment
bleaching cycles and the regenerative visual cycles. 3) Assess the influence of cytosolic effectors and visual
cycle components on the rate of hydrolysis of rhodopsin chromophore in knockout mouse models. Using the
methods described in Aim 2, we will characterize the rate of Schiff base hydrolysis in Arr1-/-, Grk1-/-, Abca4-/-,
and Rdh8-/- mice, providing new insights into how light and dark adaptation are modulated by
phototransduction and visual cycle proteins. 4) Characterize the molecular architecture of rhodopsin
complexes with lipids and small molecules using native mass spectrometry. Using the native MS technique, we
will quantify phospholipids that associate with rhodopsin in its various activation states. We will also validate
the pharmacodynamics and pharmacokinetics of small molecule therapeutic candidates in vivo. We believe the
information gleaned from these studies will enhance our understanding of retinal diseases at the molecular
level and enable the development of novel strategies for their treatment.
摘要:视觉颜料启动人类的视觉体验,使它们具有极大的生理兴趣,
并且在视网膜疾病中也受到影响。因此,许多研究工作已致力于
表征他们的结构功能关系。尽管做出了这些努力,但仍在我们的
了解视觉色素光化学和信号传导特性。了解这种基本视觉
生理学对于在开发相关视网膜病的治疗方面加速进展是必要的。在
所有视觉颜料的心脏都是视网膜甲醛发色团,它在顺式trans trans上进行异构化。
合适波长的光子吸收。这种复杂的反应,通过几个
光插图,触发光刺激繁殖到一个的构象变化
生化反应。这种光激活过程以视网膜水的水解和释放结尾
更新受体光敏态并因此是连续的视觉功能所必需的。基本的
关于视网膜醛水解的受体结构,机制和调节剂的问题仍然存在。
Schiff基础,以及小分子治疗候选物的相互作用模式。
在这里,我们将追求四个采用新开发的工具和方法的特定目标
克服以前无法克服的实验挑战。 1)阐明视紫红质的结构
通过纳米稳定的光介体中间体。使用一系列新型的骆驼抗体,这些抗体阻碍
Rhodopsin光循环,我们将执行metarhopopsin的详细结构功能表征
中间人。 2)定义视紫红蛋白和锥体的视网膜水解水解的动力学
原生膜中的Opsin色素。我们已经开发了一种基于质谱的新型方法,可以
首次直接检测天然膜中视觉色素的视网膜缀合状态;我们将
使用此方法确定对视觉色素之间相互作用进行建模所需的关键率常数
漂白周期和再生视觉周期。 3)评估胞质效应子和视觉的影响
敲除小鼠模型中视紫红质发色团水解速率的循环成分。使用
AIM 2中描述的方法,我们将表征ARR1 - / - ,GRK1 - / - ,ABCA4 - / - ,中心的Schiff碱水解速率
和rdh8 - / - 鼠标,提供有关光和黑暗适应如何调节的新见解
光转导和视觉循环蛋白。 4)表征视紫红质的分子结构
使用天然质谱法与脂质和小分子的复合物。使用本机MS技术,我们
将量化与视紫红质在其各种激活状态下相关的磷脂。我们还将验证
体内小分子治疗候选物的药效和药代动力学。我们相信
这些研究收集的信息将增强我们对分子视网膜疾病的理解
水平并使他们的治疗策略发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip David Kiser其他文献
Philip David Kiser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip David Kiser', 18)}}的其他基金
Modulation of retinoid reactivity and pathological signaling in retinal therapeutics
视网膜治疗中类维生素A反应性和病理信号的调节
- 批准号:
9891782 - 财政年份:2020
- 资助金额:
$ 48.08万 - 项目类别:
Modulation of retinoid reactivity and pathological signaling in retinal therapeutics
视网膜治疗中类维生素A反应性和病理信号的调节
- 批准号:
10454758 - 财政年份:2020
- 资助金额:
$ 48.08万 - 项目类别:
Modulation of retinoid reactivity and pathological signaling in retinal therapeutics
视网膜治疗中类维生素A反应性和病理信号的调节
- 批准号:
10618853 - 财政年份:2020
- 资助金额:
$ 48.08万 - 项目类别:
Studies on visual cycles and their relevance to age-related macular degeneration
视觉周期及其与年龄相关性黄斑变性的相关性研究
- 批准号:
9916594 - 财政年份:2015
- 资助金额:
$ 48.08万 - 项目类别:
Studies on visual cycles and their relevance to age-related macular degeneration
视觉周期及其与年龄相关性黄斑变性的相关性研究
- 批准号:
9254423 - 财政年份:2015
- 资助金额:
$ 48.08万 - 项目类别:
Studies on visual cycles and their relevance to age-related macular degeneration
视觉周期及其与年龄相关性黄斑变性的相关性研究
- 批准号:
8921484 - 财政年份:2015
- 资助金额:
$ 48.08万 - 项目类别:
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位移、加速度双控式自复位支撑-高层钢框架结构的抗震设计方法及韧性评估研究
- 批准号:52308484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高离心加速度行星排滚针轴承多场耦合特性与保持架断裂失效机理研究
- 批准号:52305047
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于偏心光纤包层光栅的矢量振动加速度传感技术研究
- 批准号:62305269
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目