Modeling and Analysis of the Spatio-Temporal Dynamics of the Mitochondrial Network
线粒体网络时空动力学的建模与分析
基本信息
- 批准号:10568586
- 负责人:
- 金额:$ 29.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAdoptionAlgorithmsAlzheimer&aposs DiseaseAutomobile DrivingBiogenesisBiologyBiophysicsCardiomyopathiesCell VolumesCellsCellular Metabolic ProcessCellular biologyCommunitiesComputer softwareDataData AnalysesData SetDefectDevelopmentDiffusionDiseaseEquilibriumEventEvolutionFluorescenceFluorescence MicroscopyFour-dimensionalGoalsGrantGraphHeartHeart DiseasesHomeostasisImageImage AnalysisImaging technologyImpairmentKidney BeanKnowledgeLeadLightLinkLocationMalignant NeoplasmsMeasuresMethodologyMethodsMicroscopyMissionMitochondriaModelingModernizationMorphologyNerve DegenerationNeurosciencesOrganellesPolymersProcessPublic HealthReadingResearchResearch PersonnelResolutionRoleSeizuresShapesStressStrokeTestingTextbooksTimeUnited States National Institutes of HealthVertebral columnWorkcell motilitycomputerized toolsdata modelingdeep learningdeep neural networkexperimental analysisfluorescence imaginghuman diseaseimage processingmicroscopic imagingmodels and simulationneural network architecturenovel therapeuticsparticlesegmentation algorithmsimulationsoftware developmentspatiotemporalterabytetool
项目摘要
PROJECT SUMMARY/ABSTRACT
Mitochondria provide 90% of our energy; defects in mitochondria lead to a wide range of diseases including
seizures, stroke, heart disease, neurodegeneration, and cancer. Far from their static kidney-bean shaped
depiction in many textbooks, mitochondria form a dynamic three-dimensional network that spans the entire
volume of the cell. This network undergoes continuous remodeling through fission and fusion, motility, biogenesis
and clearance. Under stress or disease conditions, the mitochondrial network fragments and changes its
dynamic equilibrium. Understanding this equilibrium, and its changes and adjustments to disease, is an
archetypical question in quantitative cellular organelle biology. The dynamic mitochondrial network has so far
evaded experimental interrogation and modeling as mitochondria were too small and too fast for volumetric
fluorescence microscopy. Fortunately, recent advances in imaging technology, namely lattice light-sheet
microscopy (LLSM), have changed that. Substantial preliminary data in this application supports the working
hypothesis that a combination of quantitative LLSM image processing, and particle based spatial modeling can
succeed in creating the first four-dimensional (4D) spatiotemporal model of the mitochondrial network. The goal
of the proposed work is to elucidate the fundamental biophysical principles of mitochondrial network
homeostasis. We have outlined three aims that will enable us to close this knowledge gap.
Aim 1 will test the hypothesis that deep learning-based mitochondria segmentation will demonstrate more
accurate extraction of the 4D mitochondrial network from LLSM data as compared to traditional methods. New
deep neural network architectures will be developed to test this hypothesis. It is expected that a tool will be
delivered that generalizes across diverse imaging conditions and diverse mitochondrial form and function
impaired conditions.
Aim 2 will test the hypothesis that graph-based topological linking will demonstrate the first temporal tracking of
the 4D mitochondrial network. New linear assignment problem-based algorithms will be developed to precisely
track the mitochondrial network backbone as well as its fission/fusion events. It is expected that a tool will be
delivered that can track the mitochondrial network in a variety of imaging conditions and mitochondrial form and
function impaired conditions.
Aim 3 will test the hypothesis that morphology, dynamics, and function of the mitochondrial network are linked
and can be predicted. A new particle-based polymer simulation model will be developed based on 4D graph
temporal analysis of experimental data. It is expected that the first 4D spatio-temporal model of the mitochondrial
network will be developed that can predict form and function observables and their time evolution from first
principles.
项目摘要/摘要
线粒体提供我们90%的能量;线粒体缺陷导致多种疾病
癫痫发作,中风,心脏病,神经变性和癌症。远离他们的静态肾豆形
在许多教科书中的描述中,线粒体形成一个动态的三维网络,跨越整个
细胞的体积。该网络通过裂变和融合,运动,生物发生进行连续重塑
和清除。在压力或疾病条件下,线粒体网络碎片并改变
动态平衡。了解这种平衡及其对疾病的变化和调整是
定量细胞细胞器生物学中的原型问题。到目前为止,动态线粒体网络具有
逃避的实验询问和建模作为线粒体太小,太快了,无法容纳
荧光显微镜。幸运的是,成像技术的最新进展,即晶格灯页
显微镜(LLSM)已将其改变。本应用程序中的大量初步数据支持工作
假设定量LLSM图像处理和基于粒子的空间建模的组合可以
成功创建了线粒体网络的第一个四维(4D)时空模型。目标
拟议的工作是阐明线粒体网络的基本生物物理原理
稳态。我们概述了三个目标,这些目标将使我们能够缩小这一知识差距。
AIM 1将检验以下假设,即深度学习的线粒体分割将显示更多
与传统方法相比,从LLSM数据中准确提取4D线粒体网络。新的
将开发深层神经网络体系结构来检验这一假设。预计工具将是
交付的,可以跨越各种成像条件以及各种线粒体形式和功能
条件受损。
AIM 2将检验以下假设:基于图的拓扑链接将证明第一个时间跟踪
4D线粒体网络。新的线性分配基于问题的算法将被开发为精确
跟踪线粒体网络骨干及其裂变/融合事件。预计工具将是
可以在各种成像条件和线粒体形式和线粒体形式和
功能受损条件。
AIM 3将测试线粒体网络的形态,动力学和功能的假设
并且可以预测。将基于4D图开发一个新的基于粒子的聚合物仿真模型
实验数据的时间分析。预计线粒体的第一个4D时空模型
将开发可以预测形式和功能可观察到的网络及其从第一
原则。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Johannes Schoeneberg其他文献
Johannes Schoeneberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Johannes Schoeneberg', 18)}}的其他基金
Decode Mitochondrial Morphology Dynamics to Predict Cell Fate Decisions
解码线粒体形态动力学以预测细胞命运决策
- 批准号:
10473200 - 财政年份:2022
- 资助金额:
$ 29.6万 - 项目类别:
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位移、加速度双控式自复位支撑-高层钢框架结构的抗震设计方法及韧性评估研究
- 批准号:52308484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高离心加速度行星排滚针轴承多场耦合特性与保持架断裂失效机理研究
- 批准号:52305047
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于偏心光纤包层光栅的矢量振动加速度传感技术研究
- 批准号:62305269
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 29.6万 - 项目类别:
Engineering 3D Osteosarcoma Models to Elucidate Biology and Inform Drug Discovery
工程 3D 骨肉瘤模型以阐明生物学并为药物发现提供信息
- 批准号:
10564801 - 财政年份:2023
- 资助金额:
$ 29.6万 - 项目类别:
Evaluating the natural evolution of myocardial stiffness in aging, sex differences, and through menopause transition in women, using a free-breathing magnetic resonance elastography approach
使用自由呼吸磁共振弹性成像方法评估衰老、性别差异以及女性更年期过渡过程中心肌僵硬度的自然演变
- 批准号:
10583713 - 财政年份:2023
- 资助金额:
$ 29.6万 - 项目类别:
High-Resolution Lymphatic Mapping of the Upper Extremities with MRI
使用 MRI 进行上肢高分辨率淋巴图谱分析
- 批准号:
10663718 - 财政年份:2023
- 资助金额:
$ 29.6万 - 项目类别:
Team-Based Virtual Field Exercises for HAZMAT Training
基于团队的危险品培训虚拟现场练习
- 批准号:
10684418 - 财政年份:2023
- 资助金额:
$ 29.6万 - 项目类别: