Metabolic regulation of MODS in pediatric mitochondrial disorders
小儿线粒体疾病中 MODS 的代谢调节
基本信息
- 批准号:10744903
- 负责人:
- 金额:$ 67.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAgeBiochemistryBioenergeticsBiological MarkersBrainCardiac MyocytesCategoriesCell Culture TechniquesCell DeathCell Differentiation processCell modelCell physiologyCellsChildChildhoodChronicClinicalCommunitiesComplexDNADNA Sequence AlterationDataDefectDiagnosisDiseaseEventExhibitsExperimental DesignsFibroblastsFrequenciesFunctional disorderGastrointestinal tract structureGenerationsGeneticGenomicsHealthHeartHumanImpairmentInjuryInterventionKidneyLifeLinkMedical GeneticsMembrane PotentialsMetabolicMetabolic ControlMetabolic DiseasesMetabolic stressMetabolismMissionMitochondriaMitochondrial DNAMitochondrial DiseasesMorphologyMultiple Organ FailureMuscleNADHNeuronsNuclearOrganOrgan failureOutcomeOxidation-ReductionOxidative StressPathogenicityPathway interactionsPatientsPhenotypePhysiologyPlayPolyaminesProcessProductionPutrescineRegulationResearchRespirationRespiratory ChainRoleSeveritiesSeverity of illnessSkinStressSymptomsTestingTherapeuticTissuesToxic effectUnited States National Institutes of HealthVariantVirus Diseasesbiological adaptation to stresscell typecomparison controlcurrent pandemicfightingimprovedin vivo Modelindexinginduced pluripotent stem cellinterestmetabolic ratemetabolomicsmitochondrial dysfunctionmitochondrial genomemitochondrial membranemortalitymouse modelnext generation sequencingnovelpersonalized medicinepersonalized strategiespodocytepolycationpre-clinicalresponseskin disorderstem cell biologystem cellsstressortherapeutic candidate
项目摘要
PROJECT SUMMARY
Devastating human primary mitochondrial disorders are caused by pathogenic mtDNA variants and frequently
evolve into organ failures referred to, as mitochondrial-induced multiple organ dysfunction syndrome
(MIMODS). The underlying pathophysiologic mechanisms are more complex than a mere decrease in ATP pro-
duction and very little is known about these complex processes in a tissue-specific manner. There is thus an
urgent unmet need to assess the impact of the widespread mitochondrial dysfunction in multiple tissues leading
to MIMODS. We have demonstrated deleterious outcomes of widespread mitochondrial dysfunction (lowered
bioenergetics health index, abnormal mitochondrial morphology, elevated putrescine levels) in multiple pediat-
ric PMD dermal fibroblasts carrying unique pathogenic mtDNA variants. Based on our findings, we hypothesize
that elevated putrescine levels cause oxidative stress response and widespread mitochondrial dysfunction that
contributes to MIMODS in cellular models of primary mitochondrial disorders. Our collaborative team will de-
sign experiments and build upon established expertise in mitochondrial genetics and physiology, stem cell biol-
ogy and differentiation, next-generation sequencing analysis and metabolite profiling to address the following
research aims: In Aim 1, we will comprehensively assess mitochondrial dysfunction in twenty pediatric diseased
fibroblasts with a confirmed diagnosis of PMDs, along with five age matched controls. We will assess the oxida-
tive stress markers, NAD/NADH redox biochemistry, metabolomics, mitochondrial respiration and morphology.
In aim 2, we will seek to understand tissue-specific abnormalities associated with mitochondrial dysfunction in
neurons, cardiomyocytes and podocytes. In aim 3, we will assess the effect of targeted interventions of reducing
oxidative stress and improving mitochondrial respiration in multiple differentiated cell types that exhibit ele-
vated putrescine levels; and in multiple tissues from preclinical mouse models of PMD. The completion of these
aims will contribute to a newer understanding of putrescine metabolism in multiple energy-intensive cell types
derived from patients with pediatric PMD and its role in triggering MIMODS. In the long-term, our studies have
the potential to develop strategies for individualized testing of patient cells with candidate therapeutics to drive
rational, personalized therapies.
项目概要
毁灭性的人类原发性线粒体疾病是由致病性 mtDNA 变异引起的,并且经常发生
演变成器官衰竭,称为线粒体诱导的多器官功能障碍综合征
(MIMODS)。潜在的病理生理机制比单纯的 ATP 亲和性降低更为复杂。
诱导,但人们对组织特异性方式的这些复杂过程知之甚少。因此有一个
迫切需要评估多种组织中广泛存在的线粒体功能障碍的影响,但这一需求尚未得到满足
到 MIMODS。我们已经证明了广泛的线粒体功能障碍(降低
多种儿科疾病的生物能学健康指数、线粒体形态异常、腐胺水平升高)
ric PMD 真皮成纤维细胞携带独特的致病性 mtDNA 变异。根据我们的发现,我们假设
腐胺水平升高会导致氧化应激反应和广泛的线粒体功能障碍
有助于原发性线粒体疾病细胞模型中的 MIMODS。我们的协作团队将
签署实验并建立在线粒体遗传学和生理学、干细胞生物学方面的既定专业知识基础上
生物学和分化、下一代测序分析和代谢物分析,以解决以下问题
研究目标:在目标 1 中,我们将全面评估 20 名儿科疾病患者的线粒体功能障碍
确诊患有 PMD 的成纤维细胞,以及五名年龄匹配的对照。我们将评估氧化
活性应激标记、NAD/NADH 氧化还原生物化学、代谢组学、线粒体呼吸和形态。
在目标 2 中,我们将寻求了解与线粒体功能障碍相关的组织特异性异常。
神经元、心肌细胞和足细胞。在目标 3 中,我们将评估有针对性的干预措施的效果,以减少
多种分化细胞类型中的氧化应激和改善线粒体呼吸
改变腐胺水平;以及 PMD 临床前小鼠模型的多个组织中。这些工作的完成
目标将有助于对多种能量密集型细胞类型中的腐胺代谢有新的认识
来自儿科 PMD 患者及其在触发 MIMODS 中的作用。从长远来看,我们的研究
开发利用候选疗法对患者细胞进行个体化测试的策略的潜力
合理的、个性化的治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shilpa Iyer其他文献
Shilpa Iyer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shilpa Iyer', 18)}}的其他基金
mtDNA heteroplasmy in development and differentiation: an in vitro approach
发育和分化中的线粒体DNA异质性:一种体外方法
- 批准号:
9347551 - 财政年份:2013
- 资助金额:
$ 67.35万 - 项目类别:
mtDNA heteroplasmy in development and differentiation: an in-vitro approach
发育和分化中的线粒体DNA异质性:一种体外方法
- 批准号:
8497267 - 财政年份:2013
- 资助金额:
$ 67.35万 - 项目类别:
相似国自然基金
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
年龄结构和空间分布对艾滋病的影响:建模、分析与控制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
随机噪声影响下具有年龄结构的布鲁氏菌病动力学行为与最优控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 67.35万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 67.35万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 67.35万 - 项目类别:
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 67.35万 - 项目类别:
Identifying and Addressing the Effects of Social Media Use on Young Adults' E-Cigarette Use: A Solutions-Oriented Approach
识别和解决社交媒体使用对年轻人电子烟使用的影响:面向解决方案的方法
- 批准号:
10525098 - 财政年份:2023
- 资助金额:
$ 67.35万 - 项目类别: