Engineering Biomaterials to Modulate the Bone Marrow Microenvironment in Multiple Myeloma
工程生物材料调节多发性骨髓瘤的骨髓微环境
基本信息
- 批准号:10744373
- 负责人:
- 金额:$ 4.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-09 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAdhesionsAntineoplastic AgentsAntitumor ResponseArchitectureBig DataBindingBiocompatible MaterialsBioinformaticsBiomedical EngineeringBlood CirculationBone MarrowBortezomibCancer BiologyCell AdhesionCell CommunicationCellsCessation of lifeChemistryClinicClinicalComplexCustomCyclophilin ADevelopmentDiseaseDrug Delivery SystemsDrug resistanceE-SelectinEncapsulatedEndothelial CellsEndotheliumEngineeringFormulationFundingGene SilencingGenetic TranscriptionGoalsHematologic NeoplasmsHistologyHomingHybridsIn VitroKnowledgeLaboratoriesLaboratory ResearchLibrariesLigandsLipidsMalignant Bone Marrow NeoplasmMalignant NeoplasmsMechanicsMembraneMentorsMessenger RNAMethodsMicrofluidicsMigration AssayModalityModelingMultiple MyelomaMusNanotechnologyNeoplasm MetastasisNucleic AcidsPatientsPennsylvaniaPhasePlasma CellsPolyethylene GlycolsPolymersPostdoctoral FellowPropertyProteasome InhibitorRNA Interference TherapyRNA SequencesRNA deliveryResearchResearch Project GrantsResistanceResistance developmentSmall Interfering RNASpecificitySurfaceTechnologyTestingTherapeuticTissue EngineeringTrainingTranslatingTumor BiologyTumor BurdenUnited StatesUnited States National Institutes of HealthUniversitiesWorkXenograft Modeladhesion receptoraptamercancer drug resistancecancer therapyclinical translationdesigndosageeffective therapyhigh dimensionalityimprovedin vitro Assayin vivoinnovationmigrationnanoparticlenew therapeutic targetnovelnucleic acid deliverypost-doctoral trainingpre-doctoralprogramsscreeningskillssmall moleculetargeted deliverytherapeutic RNAtherapeutic nanoparticlestherapeutic targetthree-dimensional modelingtranscriptome sequencingtumortumor microenvironmenttumor progressiontumor-immune system interactionsvirtualwhole body imaging
项目摘要
PROJECT SUMMARY
Multiple myeloma (MM) accounts for ~23% of all hematologic malignancies with a 2.1% of cancer-related deaths
in the United States in 2022. Despite tremendous efforts to develop effective therapies, MM remains largely
incurable, and virtually all patients develop resistance to current therapies. Thus, there is an urgent clinical need
for innovative and improved MM therapeutics. It has been demonstrated that bone marrow endothelium is critical
to MM cell homing, progression, survival, and drug resistance. Specifically, cyclophilin A and E-selectin, a
homing factor and adhesion receptor, respectively, expressed by bone marrow endothelial cells, are critical to
MM survival. Thus, inhibition of cyclophilin A and E-selectin provides a potential therapeutic strategy to abolish
MM dissemination and resistance. However, direct- and specific-inhibition of cyclophilin A and E-selectin by
small molecules has been elusive. Thus, cyclophilin A and E-selectin are promising candidates for combination
RNA interference (RNAi) therapy, which inhibits traditionally undruggable targets by directly reducing their
messenger RNA (mRNA) expression. The challenge of utilizing small-interfering RNA (siRNA) is the need for
safe and effective delivery methods, as siRNA degrades in the bloodstream and does not readily cross
membranes. During my predoctoral studies, I have engineered a library of polymer-lipid hybrid biomaterials, that
in combination with polyethylene glycol (PEG)-lipid conjugates and siRNA, assembled into nanoparticles (NPs)
via microfluidic mixing. Through high-throughput in vivo screening, I identified a NP formulation with potent gene
silencing in bone marrow endothelial cells in vivo. This formulation was used to encapsulate cyclophilin A siRNA,
and showed inhibition of MM progression in vivo, and sensitized MM cells to the proteasome inhibitor bortezomib,
a current therapeutic modality to treat MM. During the F99 phase, I will improve our NP design by incorporating
bone marrow endothelial-targeting ligands on the NP’s surface to enhance their specificity to bone marrow
endothelium, minimizing off-target effects. I will use our targeted NP to co-encapsulate cyclophilin A and E-
selectin siRNA sequences, and evaluate their inhibition in vitro through adhesion and transendothelial migration
assays, to determine the invasive abilities of MM cells. Further, I will test our co-delivery siRNA nanotechnology
through a survival study in a validated mouse xenograft model of MM and quantify its effects either alone or in
combination with bortezomib. This technology is expected to provide with a broadly enabling platform to target
other bone marrow-homing cancers. For the K00 phase, I will identify a renowned cancer biology laboratory to
study cell-cell interactions in the bone marrow immune microenvironment utilizing high-dimensional single-cell
approaches and tissue-engineered models, with the aim to determine mechanisms that drive cancer progression
and drug resistance. Completion of this project will successfully prepare me to launch an NIH-funded research
laboratory that focuses on drug delivery targeting the tumor microenvironment as means of cancer therapy.
项目摘要
多发性骨髓瘤(MM)占所有血液系统恶性肿瘤的约23%,占癌症相关的2.1%
在2022年美国,尽管为开发有效的疗法做出了巨大努力,MM仍在很大程度上仍然
无法治愈,几乎所有患者都会对当前疗法产生抗药性。那是紧迫的临床需求
用于创新和改进的MM治疗。已经证明骨髓内皮很关键
MM细胞归巢,进展,存活和耐药性。具体而言,环磷脂A和E-选择素,A
由骨髓内皮细胞表达的分别表达的归因因子和粘合受体对
MM生存。那抑制环肽A和E-选择素提供了一种潜在的治疗策略来消除
MM传播和抵抗力。但是,通过直接和特异性抑制环磷脂A和E-选择蛋白
小分子难以捉摸。那就是,环蛋白A和E-选择素是合并的候选者
RNA干扰(RNAi)疗法,该疗法通过直接降低其抑制了传统上不可能的靶标的
信使RNA(mRNA)表达。使用小型互换RNA(siRNA)的挑战是需要
安全有效的递送方法,因为siRNA在血液中降解,并且不容易交叉
膜。在我的研究期间,我设计了一个聚合物 - 脂质混合材料的库,
结合聚乙烯乙二醇(PEG) - 脂质结合物和siRNA,组装成纳米颗粒(NPS)
通过微流体混合。通过体内筛选高通量,我确定了具有潜在基因的NP公式
在体内沉默骨髓内皮细胞。该公式用于封装环磷脂siRNA,
并显示体内MM进展的抑制作用,以及对蛋白酶体抑制剂硼替佐米的敏感MM细胞,
当前的热模态以治疗MM。在F99阶段,我将通过编码来改善我们的NP设计
NP表面上的骨髓内皮靶向配体,以增强其对骨髓的特异性
内皮,最小化脱靶效应。我将使用我们的靶向NP共同服用环粒蛋白A和E-
选择素siRNA序列,并通过粘合剂和跨内皮迁移评估其体外抑制作用
测定,以确定MM细胞的侵入性能力。此外,我将测试我们的共递送siRNA纳米技术
通过在经过验证的MM的小鼠Xenographic模型中进行的生存研究,并单独或在
与硼替佐米结合。预计该技术将为目标提供广泛的平台
其他骨髓癌。对于K00阶段,我将确定一个著名的癌症生物学实验室
利用高维单细胞的骨髓免疫环境中的研究细胞 - 细胞相互作用
方法和组织工程模型,目的是确定驱动癌症进展的机制
和耐药性。该项目的完成将成功地为我启动NIH资助的研究做好准备
专注于针对肿瘤微环境作为癌症治疗的药物的实验室。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christian Gabriel FIGUEROA-ESPADA其他文献
Christian Gabriel FIGUEROA-ESPADA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
载Pexidartinib的纳米纤维膜通过阻断CSF-1/CSF-1R通路抑制巨噬细胞活性预防心脏术后粘连的研究
- 批准号:82370515
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
泛素连接酶SMURF2通过SMAD6-COL5A2轴调控宫腔粘连纤维化的分子机制研究
- 批准号:82360301
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
- 批准号:82302691
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
活血通腑方调控NETs干预术后腹腔粘连组织纤维化新途径研究
- 批准号:82374466
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
FASEB SRC: Structure and Function of Small GTPases
FASEB SRC:小 GTP 酶的结构和功能
- 批准号:
10463260 - 财政年份:2022
- 资助金额:
$ 4.92万 - 项目类别:
Chemical Remodeling of Cell Surface to Enhance the Accumulation of Therapeutic Bacteria to Tumors
细胞表面的化学重塑以增强治疗性细菌对肿瘤的积累
- 批准号:
10535464 - 财政年份:2022
- 资助金额:
$ 4.92万 - 项目类别:
Discovery of PPI inhibitors for the FAK FAT domain
发现 FAK FAT 结构域的 PPI 抑制剂
- 批准号:
10576504 - 财政年份:2022
- 资助金额:
$ 4.92万 - 项目类别:
Chemical Remodeling of Cell Surface to Enhance the Accumulation of Therapeutic Bacteria to Tumors
细胞表面的化学重塑以增强治疗性细菌对肿瘤的积累
- 批准号:
10391986 - 财政年份:2022
- 资助金额:
$ 4.92万 - 项目类别:
Targeting mechanosignaling in pediatric brain cancer
针对儿童脑癌的机械信号传导
- 批准号:
10571843 - 财政年份:2022
- 资助金额:
$ 4.92万 - 项目类别: