Targeting mechanosignaling in pediatric brain cancer
针对儿童脑癌的机械信号传导
基本信息
- 批准号:10571843
- 负责人:
- 金额:$ 32.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-14 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdherent CultureAdhesionsAdhesivesAffectAntineoplastic AgentsAreaBiological AssayBiological ProcessBiologyBrainBrain NeoplasmsCell Culture TechniquesCell Differentiation processCell ProliferationCell SurvivalCell physiologyCellsCerebellumChildhood Brain NeoplasmChildhood Malignant Brain TumorClinical TrialsCollagenCombined Modality TherapyCuesDataDevelopmentDrug ScreeningDrug TargetingEncapsulatedEnvironmentEquipmentExtracellular MatrixExtracellular Matrix ProteinsFDA approvedFoundationsFutureGrowth FactorHigh PrevalenceHumanHydrogelsInjectableLaboratoriesLibrariesLiquid substanceLuciferasesMalignant - descriptorMalignant Childhood NeoplasmMalignant NeoplasmsMalignant neoplasm of brainMatrix MetalloproteinasesMeasuresMediatorModelingMusNatural ProductsNeuronsOncogenicOutcome StudyPathway interactionsPeptidesPerformancePharmaceutical PreparationsPhenotypePhysiologyPolysaccharidesPrognosisPropertyProteinsProteoglycanQuality ControlResearchRoboticsSecond Primary CancersSignal PathwaySignal TransductionSolidSurvivorsTechnologyTestingTherapeuticThinnessTimeTissuesTranscriptional Coactivator with PDZ-Binding MotifTransgenic OrganismsVertebral columnWorkbiomarker discoverybiomaterial compatibilitycancer cellcell dimensioncell motilitydesigndrug developmentdrug discoveryeffective therapyefficacy testingexperienceexperimental studyhealinghigh standardhigh throughput screeninghydrogel scaffoldimprovedin vivoinnovationinterestmechanical propertiesmedulloblastomamethylomemonolayermortalitymouse modelneoplastic cellnew technologynew therapeutic targetpharmacologicprecision medicinepublic health relevancescaffoldscreeningself assemblysensorside effectsuccessthree dimensional cell culturetumortumor microenvironmenttwo-dimensional
项目摘要
Project Summary
Despite multimodal treatment, cancer-related mortality in pediatric brain cancers remains high and survivors
often suffer from serious, life-long, therapy-related side effects and secondary malignancies. There is a clear
need for more effective therapies, including for the most common malignant pediatric brain cancer medullo-
blastoma, a tumor that originates in the cerebellum. Mechanosensitive signaling pathways have emerged as
powerful targets in cancer drug discovery, including for the treatment of medulloblastoma. Yet, when targeting
signaling pathways that serve as sensors for a tumor cell's microenvironment, traditional monolayer cultures that
are most commonly used in cell-based high-throughput drug discovery, do not accurately recapitulate critical
environmental cues such as tissue stiffness or extracellular matrix composition. Drug discovery aimed at key
mediators of mechanosensitive signaling require cell-based screening assays in a cell culture environment that
more closely resembles in vivo tissue. Three-dimensional (3D) cell cultures have moved to the forefront in the
effort to create more in vivo-like experimental environments that can mimic intricate cell-cell and cell-extracellular
matrix interactions found in tissue. Our previous collaborative work demonstrated the suitability of the self-
assembling and hydrogelating MAX8 β-hairpin peptide as a 3D cell culture scaffold for automated high-
throughput drug discovery. We demonstrated that MAX8 combines biocompatibility and tunability in function and
stiffness with unique mechanical properties (e.g., shear-thinning, injectable solid with immediate rehealing) that
allow automatic handling with standard high-throughput screening (HTS) liquid handling equipment commonly
found in a drug discovery laboratory. The primary objective of this proposal is to use the versatile and tunable
MAX8 peptide to develop a 3D cell culture scaffold that mimics key features of brain extracellular matrix while
also retaining material properties critical for use with automated liquid handling equipment, all for a high-
throughput drug discovery approach targeting mechanosignaling. Aim 1 will establish a targeted assay for a well-
characterized mechanosensitive signaling pathway that is compatible with MAX8 peptide hydrogel scaffold-
based 3D cell cultures in a high throughput-compatible setup. Aim 2 will examine how tuning hydrogel stiffness
and peptide functionalization with brain extracellular matrix components affects assay performance and
phenotype of cerebellar neurons and pediatric brain cancer cells. Aim 3 will validate the newly developed assay
platform by performing a pilot drug screen and in vivo efficacy testing of candidate compounds. The outcome of
these studies will be a 3D cell culture platform that will provide fundamental understanding of how extracellular
matrix composition and tissue stiffness regulate mechanosignaling in both normal neurons and pediatric brain
cancer cells. Additionally, these studies will lay the foundation for a future high-throughput drug discovery
approach targeting mechanosignaling in scaffold-based 3D cultures optimized for pediatric brain tumors.
项目摘要
尽管多模式治疗,小儿脑癌与癌症相关的死亡率仍然很高,幸存者仍然很高
经常患有严重的,终身治疗相关的副作用和继发性疟疾。有一个清晰的
需要更有效的疗法,包括最常见的恶性小儿脑癌髓质
Blastoma,一种起源于小脑的肿瘤。机械敏感的信号通路已经出现
癌症药物发现的强大靶标,包括用于治疗髓母细胞瘤。但是,定位时
信号通路是肿瘤细胞微环境的传感器,传统单层培养物的传感器
最常用于基于细胞的高通量药物发现中,不要准确地概括关键
环境线索,例如组织刚度或细胞外基质组成。针对关键的药物发现
机械信号传导的介体需要在细胞培养环境中基于细胞的筛查测定法
在体内组织中更相似。三维(3D)细胞培养已移至最前沿
努力创建更多类似体内的实验环境,可以模仿复杂的细胞细胞和细胞细胞细胞
在组织中发现的基质相互作用。我们以前的合作工作证明了自我的适合性
组装和水凝胶Max8β-发行肽作为3D细胞培养支架,用于自动高 -
吞吐药物发现。我们证明了Max8结合了功能中的生物相容性和可鼠能力
具有独特的机械性能的刚度(例如,剪切薄,可直接重新调整的可注射固体)
允许使用标准高通量筛选(HTS)液体处理设备自动处理
在药物发现实验室中发现。该提案的主要目的是使用多功能和可调的
Max8胡椒开发一个3D细胞培养脚手架,该脚手架模仿脑外基质的关键特征
还保留适用于自动液体处理设备至关重要的材料特性,所有这些都适用于高
吞吐药物发现方法靶向机械信号。 AIM 1将建立针对良好的目标测定
与Max8肽水凝胶支架兼容的机械敏感信号传导途径
基于高吞吐量兼容的设置中的基于3D细胞培养物。 AIM 2将检查如何调整水凝胶刚度
用大脑外基质组件与辣椒功能化影响分析性能和
小脑神经元和小儿脑癌细胞的表型。 AIM 3将验证新开发的测定法
通过进行试验药物筛查和对候选化合物的体内效率测试的平台。结果
这些研究将是一个3D细胞培养平台,将提供对细胞外的基本了解
基质组成和组织刚度调节正常神经元和小儿大脑的机制信号
癌细胞。此外,这些研究将为未来的高通量药物发现奠定基础
在基于脚手架的3D培养物中针对小儿脑肿瘤优化的基于支架的3D培养物的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sigrid A Langhans其他文献
Sigrid A Langhans的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sigrid A Langhans', 18)}}的其他基金
Targeting mechanosignaling in pediatric brain cancer
针对儿童脑癌的机械信号传导
- 批准号:
10446254 - 财政年份:2022
- 资助金额:
$ 32.35万 - 项目类别:
相似海外基金
Investigating the Ability of Human Blood Neutrophils to Kill Cancer
研究人类血液中性粒细胞杀死癌症的能力
- 批准号:
10648774 - 财政年份:2023
- 资助金额:
$ 32.35万 - 项目类别:
Regulation of Adherent Cell Proliferation by Matrix Viscoelasticity
基质粘弹性对贴壁细胞增殖的调节
- 批准号:
10735701 - 财政年份:2023
- 资助金额:
$ 32.35万 - 项目类别:
Targeting mechanosignaling in pediatric brain cancer
针对儿童脑癌的机械信号传导
- 批准号:
10446254 - 财政年份:2022
- 资助金额:
$ 32.35万 - 项目类别:
Engineering Brain Cancer in a Dish: Hydrogel-based 3D in vitro Models for Pediatric Brain Tumor
在培养皿中改造脑癌:基于水凝胶的小儿脑肿瘤 3D 体外模型
- 批准号:
10284928 - 财政年份:2021
- 资助金额:
$ 32.35万 - 项目类别:
Engineering Brain Cancer in a Dish: Hydrogel-based 3D in vitro Models for Pediatric Brain Tumor
在培养皿中改造脑癌:基于水凝胶的小儿脑肿瘤 3D 体外模型
- 批准号:
10539308 - 财政年份:2021
- 资助金额:
$ 32.35万 - 项目类别: