Development of machine learning methods to support collaboration in a neurodiverse team at work

开发机器学习方法以支持神经多元化团队在工作中的协作

基本信息

  • 批准号:
    10620693
  • 负责人:
  • 金额:
    $ 7.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-15 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract Managing growing diversity is an ongoing challenge and opportunity for the U.S. public sector. Public attention to the neurodiversity movement, recognizing neurological differences as the identity of an individual, has been growing over the years. Yet, it is still uncertain how to promote and support this new dimension of diversity especially in the workplace. Adults with autism spectrum disorder (ASD) are substantially underrepresented in the workplace. Emerging work tools and technologies (e.g., collaborative robots, virtual reality [VR]) embedded with artificial intelligence (AI)/machine learning (ML) are greatly affecting fundamental skills required for current and future jobs. Such skills include problem solving, collaboration, social intelligence, and communication. Autistic individuals generally show differences in these and related skills, and have continued to experience barriers in finding and maintaining employment. Our long-term goal is to promote effective collaboration and communication between autistic adults and their coworkers in the workplace. In this project, we will (1) leverage an ML approach to recognize and classify physiological, cognitive, behavioral, emotional, and engagement states of neurodivergent individuals during a collaborative in- person task and (2) learn and predict the dynamics of collaborative behavioral patterns during complex problem solving exhibited in a remote work setting. In Aim 1, to understand collaboration processes and strategies of a neurodiverse team, we will conduct a lab study that involves a simulated assembly task using LEGO® blocks. Multimodal data (e.g., physiological synchrony, facial expression) from each member of three different dyadic teams (autistic-autistic, autistic-nonautistic, and nonautistic-nonautistic) will be collected. Detailed labels (for ML algorithms) will be developed to reflect underlying properties of collaborative processes, and strategies (e.g., sequences of processes) will be modeled with a Hidden Markov model (HMM). In Aim 2, a virtual LEGO® assembly task will be performed by dyadic teams to examine the ML-based approach (developed in Aim 1) in a remote work setting. Completing this developmental project will establish a foundation for future efforts to extend relevant research capabilities and innovative research, such as the advancement of workplace design guidelines and technology, to promote and support an effective neurodiverse workplace.
项目概要/摘要 管理日益增长的多样性对美国公共部门来说是一个持续的挑战和机遇。 公众对神经多样性运动的关注,认识到神经学差异是 多年来,个人的身份一直在增长,但如何实现仍然不确定。 促进和支持这种新的多样性,特别是在工作场所。 患有自闭症谱系障碍 (ASD) 的成年人在 新兴工作工具和技术(例如协作机器人、虚拟现实 [VR]) 嵌入人工智能(AI)/机器学习(ML)正在极大地影响 当前和未来工作所需的基本技能包括解决问题、 自闭症患者普遍表现出协作、社交智力和沟通能力。 这些技能和相关技能存在差异,并且在寻找和 我们的长期目标是促进有效的合作和 在这个项目中,我们研究了自闭症成年人和他们的同事之间的沟通。 将 (1) 利用机器学习方法来识别和分类生理、认知、行为、 神经分歧个体在协作过程中的情绪和参与状态 人员任务和(2)学习和预测协作行为模式的动态 在远程工作环境中解决复杂的问题。 在目标 1 中,为了了解神经多元化团队的协作流程和策略,我们将 进行一项涉及使用 LEGO® 积木模拟组装任务的实验室研究。 来自三个不同成员的每个成员的数据(例如,生理同步性、面部表情) 将收集二元团队(自闭症-自闭症、自闭症-非自闭症和非自闭症-非自闭症)。 将开发详细的标签(用于 ML 算法)以反映 协作流程和策略(例如流程序列)将使用以下模型进行建模 隐马尔可夫模型 (HMM) 在目标 2 中,虚拟乐高®组装任务将由以下人员执行。 双元团队在远程工作环境中检查基于 ML 的方法(在目标 1 中开发)。 完成该开发项目将为未来的扩展奠定基础 相关研究能力和创新研究,例如工作场所的进步 设计指南和技术,以促进和支持有效的神经多元化工作场所。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sun Wook Kim其他文献

Sun Wook Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sun Wook Kim', 18)}}的其他基金

Development of machine learning methods to support collaboration in a neurodiverse team at work
开发机器学习方法以支持神经多元化团队在工作中的协作
  • 批准号:
    10432554
  • 财政年份:
    2022
  • 资助金额:
    $ 7.09万
  • 项目类别:

相似国自然基金

人工智能工具对预期与货币政策有效性影响的实验研究
  • 批准号:
    72303050
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
人工智能客服对可持续消费决策的影响与作用机理研究
  • 批准号:
    72371226
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
制造企业人工智能工作场景下员工AI认同影响机制与员工主动行为内在机理研究
  • 批准号:
    72362025
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
医疗人工智能服务中感知当责的前因与影响分析-基于医生与用户双重视角的研究
  • 批准号:
    72372111
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
共享住宿平台中人工智能技术应用的影响机制研究
  • 批准号:
    72372130
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目

相似海外基金

Automating Assessment of Contextualization of Care During the Clinical Encounter
在临床遇到的情况下自动评估护理情境化
  • 批准号:
    10595446
  • 财政年份:
    2023
  • 资助金额:
    $ 7.09万
  • 项目类别:
Optimization and Validation of a Cost-effective Image-Guided Automated Extracapsular Extension Detection Framework through Interpretable Machine Learning in Head and Neck Cancer
通过可解释的机器学习在头颈癌中优化和验证具有成本效益的图像引导自动囊外扩展检测框架
  • 批准号:
    10648372
  • 财政年份:
    2023
  • 资助金额:
    $ 7.09万
  • 项目类别:
Remote Kinesiology for Improving Human Health with Auto-locating Compliant Motion Tracking Stickers and Artificial Intelligence
通过自动定位兼容运动跟踪贴纸和人工智能来改善人类健康的远程运动机能学
  • 批准号:
    10751952
  • 财政年份:
    2023
  • 资助金额:
    $ 7.09万
  • 项目类别:
AI-enabled Stroke Prediction in Patients with Chronic Kidney Disease
基于人工智能的慢性肾病患者中风预测
  • 批准号:
    10481070
  • 财政年份:
    2022
  • 资助金额:
    $ 7.09万
  • 项目类别:
Dance4Healing: a feasibility study to reduce health disparity and increase engagement of an intergenerational telehealth program for minority diabetes patients and their care partners.
Dance4Healing:一项可行性研究,旨在减少少数族裔糖尿病患者及其护理伙伴的健康差距并提高代际远程医疗计划的参与度。
  • 批准号:
    10604415
  • 财政年份:
    2022
  • 资助金额:
    $ 7.09万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了