Mechanisms of Neurodegeneration in CMT4B3: a Complex Pediatric Neurodevelopmental Disorder

CMT4B3 神经退行性变的机制:一种复杂的小儿神经发育障碍

基本信息

项目摘要

Charcot-Marie-Tooth Disease type 4B3 (CMT4B3) is a rare, autosomal recessive hereditary axonal neuropathy, often presenting with severe regression of developmental milestones during infancy or early childhood. CMT4B3 has a wide clinical spectrum of symptoms. It ranges from an isolated demyelinating sensorimotor polyneuropathy to a complex neurodevelopmental phenotype with axonal neuropathy, cranial nerve involvement, intellectual disability and facial dysmorphism. Most children affected by CMT4B3 present with the severe phenotype. CMT4B3 is caused by mutations in the Sbf1 gene, resulting in disrupted function of the pseudo-inositol phosphatase, Myotubularin-Related Protein 5 (MTMR5). In this proposal, we focus on MTMR5, a developmentally important regulator of autophagy and endo-lysosomal trafficking, and its involvement in proper axonal homeostasis. MTMR5 is known to catalytically regulate and dictate the subcellular localization of Myotubularin- Related Protein 2 (MTMR2), an active phosphatase against phosphatidylinositol species. MTMR2 has known roles in Schwann cell homeostasis and loss of MTMR2 leads to a demyelinating neuropathy. MTMR5 was also identified as a neuron-specific suppressor of autophagy. Despite this knowledge, it is entirely unknown how disrupted function of MTMR5 leads to axonal degeneration during early childhood. Through the aims of this fellowship and using an established iPSC-derived motor neuron model of CMT4B3, I seek to clarify the biochemical role of MTMR5 in motor neurons and how loss of normal MTMR5 function results in axon degeneration early in development. In Aim 1 of this fellowship, I propose to utilize an iPSC-derived motor neuron model of CMT4B3 to understand the effects of MTMR5 loss on MTMR2, MTMR13, and phosphoinositide levels and discriminate if residual MTMR5 function causes toxicity in axons. In Aim 2, I seek to l gene expression profiling to characterize the downstream defects as a result of MTMR5 loss, which likely stem from MTMR5’s role in autophagy and endo-lysosomal trafficking. I plan to develop high-content image-based analyses to confirm expression profiling results and to create a much needed platform for drug discovery and gene therapy validation. Fully understanding the mechanisms underlying CMT4B3 is critical to the NICHD mission. Such knowledge is crucial for development and proper evaluation of therapeutic modalities that could help CMT4B3 patients. With this perspective, the proposed project is tailored to my training towards becoming a translational pediatric neurologist and scientist.
腓骨肌萎缩症 4B3 型 (CMT4B3) 是一种罕见的常染色体隐性遗传病 轴突神经病,通常表现为婴儿期发育里程碑的严重退化 CMT4B3 具有广泛的临床症状,包括孤立的症状。 脱髓鞘性感觉运动性多发性神经病发展为轴突复杂的神经发育表型 神经病变、脑神经受累、智力障碍和面部畸形。 受 CMT4B3 影响的严重表型是由 Sbf1 突变引起的。 基因,导致假肌醇磷酸酶、肌管蛋白相关蛋白的功能破坏 5 (MTMR5) 在本提案中,我们重点关注 MTMR5,它是自噬的发育重要调节因子。 和内溶酶体运输,及其参与适当的轴突稳态。 已知 MTMR5 可以催化调节和决定肌管蛋白的亚细胞定位 相关蛋白 2 (MTMR2) 是一种针对 MTMR2 的活性磷酸酶。 MTMR2 在雪旺细胞稳态中的已知作用和缺失会导致脱髓鞘性神经病。 MTMR5 也被认为是一种神经元特异性自噬抑制因子。 完全不知道 MTMR5 的功能破坏如何导致早期轴突变性 通过该奖学金的目标并使用已建立的 iPSC 衍生的运动神经元。 CMT4B3 模型中,我试图阐明 MTMR5 在运动神经元中的生化作用以及如何丧失 正常的 MTMR5 功能会导致发育早期的轴突变性。在本研究的目标 1 中, 我建议利用 iPSC 衍生的 CMT4B3 运动神经元模型来了解 MTMR2、MTMR13 和磷酸肌醇水平上的 MTMR5 丢失以及残留 MTMR5 的区分 功能导致轴突毒性 在目标 2 中,我寻求基因表达谱来表征。 MTMR5 丢失导致下游缺陷,这可能源于 MTMR5 在自噬和 我计划开发基于图像的高内涵分析来确认表达。 分析结果并创建药物发现和基因治疗验证急需的平台。 充分了解 CMT4B3 的潜在机制对于 NICHD 的任务至关重要。 知识对于开发和正确评估治疗方式至关重要,这些方式可以帮助 从这个角度来看,拟议的项目是针对我的培训量身定制的。 成为一名转化儿科神经学家和科学家。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elizabeth Haley Jacobs其他文献

Elizabeth Haley Jacobs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

KIR3DL1等位基因启动子序列变异影响其差异表达的分子机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
NUP205双等位基因突变影响纤毛发生而致内脏转位合并先天性心脏病的机理研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
全基因组范围内揭示杂交肉兔等位基因特异性表达模式对杂种优势遗传基础的影响
  • 批准号:
    32102530
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
等位基因不平衡表达对采后香蕉果实后熟与品质形成的影响
  • 批准号:
    31972471
  • 批准年份:
    2019
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
高温影响水稻不同Wx等位基因表达及直链淀粉含量的分子机制研究
  • 批准号:
    31500972
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Pharmacological rescue of tooth eruption disorders
牙萌出障碍的药理学救援
  • 批准号:
    10737289
  • 财政年份:
    2023
  • 资助金额:
    $ 5.27万
  • 项目类别:
Impact of Mitochondrial Lipidomic Dynamics and its Interaction with APOE Isoforms on Brain Aging and Alzheimers Disease
线粒体脂质组动力学及其与 APOE 亚型的相互作用对脑衰老和阿尔茨海默病的影响
  • 批准号:
    10645610
  • 财政年份:
    2023
  • 资助金额:
    $ 5.27万
  • 项目类别:
Evolutionary adaptation of dense microbial populations to range expansion
密集微生物种群对范围扩张的进化适应
  • 批准号:
    10751361
  • 财政年份:
    2023
  • 资助金额:
    $ 5.27万
  • 项目类别:
Axonal Varicosity Dynamics in Central Neuron Mechanosensation and Injury
中枢神经元机械感觉和损伤中的轴突静脉曲张动力学
  • 批准号:
    10905596
  • 财政年份:
    2023
  • 资助金额:
    $ 5.27万
  • 项目类别:
Project 2: Impact of H1/H2 haplotypes on cellular disease-associated phenotypes driven by FTD-causing MAPT mutations
项目 2:H1/H2 单倍型对 FTD 引起的 MAPT 突变驱动的细胞疾病相关表型的影响
  • 批准号:
    10834336
  • 财政年份:
    2023
  • 资助金额:
    $ 5.27万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了