Integrative Prediction of Therapeutic Response in T-cell Lymphoma by Omic and Spatial Modeling
通过组学和空间模型综合预测 T 细胞淋巴瘤的治疗反应
基本信息
- 批准号:10746892
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AdoptionAftercareArchitectureAreaBiological AssayBiological MarkersBiologyCancer BiologyCancer CenterCell CommunicationCellsCharacteristicsClassificationClinicalClinical TrialsCommunicationComplexComputational BiologyComputer AnalysisConditioned ReflexDataData ScienceDevelopmentDrug CombinationsDrug resistanceEcosystemEngineeringExposure toGeneticGenetic TranscriptionImmuneInstitutionJAK1 geneJAK2 geneKnowledgeLeadLeadershipLearningLinkLogistic RegressionsMalignant - descriptorMethodsModalityModelingMolecularMutationNeighborhoodsNon-MalignantPIK3CG genePatientsPatternPerformancePharmaceutical PreparationsPhasePhenotypePlayPositioning AttributePrediction of Response to TherapyPrognosisRecurrent diseaseRelapseResearchResistanceResistance developmentRoleSamplingSensitivity and SpecificitySignal TransductionSpecimenT-Cell LymphomaTechniquesTechnologyTestingTherapeuticTrainingTraining ProgramsTranscription AlterationValidationVotingcancer typeclinical practicecohortcomputerized toolsdata integrationdesignexome sequencingexperiencegradient boostingimmunoregulationimprovedinhibitorinnovationinterestliquid crystal polymermRNA Expressionmachine learning modelmodel buildingmolecular modelingmultiplexed imagingneoplastic cellneural networknoveloutcome predictionparacrinepatient responsepatient stratificationprecision oncologypredicting responseprediction algorithmpredictive markerpredictive modelingprogramsrandom forestresistance mechanismresponsesingle cell technologyskillsspatial integrationspatial relationshipspectrographstatistical and machine learningsupport vector machinetherapy resistanttooltranscriptome sequencingtranscriptomicstranslational research programtreatment responsetumor
项目摘要
ABSTRACT
The tumor ecosystem plays a critical role in tumor development, progression and therapeutic response.
Previous studies have utilized dissociative and single-cell omics technologies to profile the tumor ecosystem,
specifically to understand therapeutic resistance and identify predictive biomarkers for precision cancer
medicine. Yet, very few of these biomarkers have adequate performance characteristics for adoption in clinical
practice. We hypothesize that a fundamental facet of the tumor ecosystem, i.e., the spatial organization of
cells, which encodes key information involving paracrine and juxtracrine interactions that drive “neighborhood-
level” biology, can further inform predictive models. Recent technological breakthroughs in highly multiplexed
imaging and spatial transcriptomics offer an unprecedented opportunity to delineate the therapeutic
consequences of spatial relationships within clinical tumor samples. Quantitative spatial features can provide
independent valuable information, which is unlikely to be captured by clinical, genetic and bulk-transcriptional
predictors. Hence, we propose to integrate highly multiplexed imaging data with omic approaches to delineate
mechanisms of resistance and build predictive models of response for patients with T-cell lymphoma, who
have a desperate unmet clinical need. In Aim 1 (K99 phase), I will build automated computational tools to
robustly quantify spatial features from highly multiplexed imaging data and integrate it with exome and RNA-
Seq. I will utilize >100 primary specimens collected pre-, on- and after-treatment with the PI3K-δγ inhibitor
duvelisib to nominate mechanisms of de novo and acquired resistance. In Aim 2 (K99 phase), I will build an
integrated machine-learning model to predict which patients are most likely to benefit from duvelisib and
evaluate the impact of spatial features towards model performance. In Aim 3 (R00 phase), I will validate the
model in an independent cohort and extend to samples from patients treated with additional agents, to identify
consistent and parsimonious signatures of spatial features that could be developed for broader use. My
extensive background in computational biology and experimental biology puts me in a unique position to
accomplish this proposal. During the K99 phase, I will be supported by an outstanding and interdisciplinary
team of advisors and collaborators (Drs. David Weinstock, Peter Sorger, Jon Aster, Allon Klein, Peter Park,
and Steven Horwitz) with expertise in all aspects of the proposed research. I will acquire new skills in (1)
computational analysis of highly multiplexed imaging to model molecular and spatial information, (2) data
integration methods to delineate regulatory programs for designing effective drug combinations and (3)
analysis of predictive biomarkers in clinical trial samples from clinical trials. Together with institutional support
from Dana Farber Cancer Center and formal coursework and training, I will bridge my knowledge gap in cancer
biology and gain the communication and leadership skills vital to transition into an independent position and
establish an independent, data science-driven, translational research program.
抽象的
肿瘤生态系统在肿瘤发育,进展和热反应中起关键作用。
先前的研究已利用解离和单细胞的奥元技术来介绍肿瘤生态系统,
专门了解治疗性耐药性并确定精确癌症的预测生物标志物
药品。然而,这些生物标志物中很少有足够的性能特征用于临床
实践。我们假设肿瘤生态系统的基本方面,即
细胞,该细胞编码涉及旁分泌和Juxtracrine相互作用的关键信息,这些信息驱动“邻居 -
水平”生物学,可以进一步告知预测模型。高度多重的技术突破
成像和空间转录组学为描述治疗性提供了前所未有的机会
临床肿瘤样品中空间关系的后果。定量空间特征可以提供
独立的有价值信息,不太可能被临床,遗传和批量转录捕获
预测指标。因此,我们建议将高度多路复用的成像数据与OMIC方法进行划定
耐药机制和为T细胞淋巴瘤患者的反应的预测模型,
有迫切未满足的临床需求。在AIM 1(K99阶段)中,我将构建自动化计算工具
从高度多重成像数据中量化空间特征,并将其与外显子组和RNA-集成
seq。我将使用PI3K-Δγ抑制剂的> 100个主要标本,并在处理前,进行后处理和后处理
Duvelisib提名从头的机制并获得了抵抗。在AIM 2(K99阶段)中,我将建立一个
集成的机器学习模型,以预测哪些患者最有可能从Duvelisib和
评估空间特征对模型性能的影响。在AIM 3(R00阶段)中,我将验证
在独立队列中模型,并扩展到接受其他药物治疗的患者的样本,以识别
可以为更广泛使用而开发的空间特征的一致和简约的签名。我的
计算生物学和实验生物学的广泛背景使我处于独特的位置
完成此建议。在K99阶段,我将得到一个杰出和跨学科的支持
顾问和合作者团队(David Weinstock博士,Peter Sorger,Jon Aster,Allon Klein,Peter Park,
和史蒂芬·霍维茨(Steven Horwitz))在拟议研究的各个方面都有专业知识。我将在(1)中获得新技能
高度多路复用成像的计算分析,以建模分子和空间信息,(2)数据
划定设计有效药物组合的监管计划的整合方法和(3)
临床试验中临床试验样品中预测性生物标志物的分析。与机构支持一起
从达纳·法伯(Dana Farber)癌症中心以及正式的课程和培训中,我将弥合癌症的知识差距
生物学并获得过渡到独立立场至关重要的沟通和领导能力
建立一个独立的,数据科学驱动的翻译研究计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ajit Johnson Nirmal其他文献
Ajit Johnson Nirmal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ajit Johnson Nirmal', 18)}}的其他基金
Integrative Prediction of Therapeutic Response in T-cell Lymphoma by Omic and Spatial Modeling
通过组学和空间模型综合预测 T 细胞淋巴瘤的治疗反应
- 批准号:
10358520 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Integrative Prediction of Therapeutic Response in T-cell Lymphoma by Omic and Spatial Modeling
通过组学和空间模型综合预测 T 细胞淋巴瘤的治疗反应
- 批准号:
10115190 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
面向掌纹识别的安全与隐私保护理论和方法研究
- 批准号:62376211
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
微观市场均衡视角下中国长期护理保险试点的福利分析与政策评估
- 批准号:72304093
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向康复护理机器人的人机信任度评估方法与任务影响机制研究
- 批准号:62306195
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于生命质量的癌症患者心理行为与护理干预
- 批准号:72381240026
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:国际(地区)合作与交流项目
天然水体中药品和个人护理品间接光降解产物预测模型的构建和应用
- 批准号:42307496
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Predicting neoadjuvant treatment response of locally advanced rectal cancer using co-registered endo-rectal photoacoustic and ultrasound imaging
使用联合配准直肠内光声和超声成像预测局部晚期直肠癌的新辅助治疗反应
- 批准号:
10637693 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Quantitative imaging phenotypic classifier for distinguishing radiation effects from tumor recurrence in Glioblastoma .
用于区分胶质母细胞瘤的放射效应和肿瘤复发的定量成像表型分类器。
- 批准号:
10375650 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Integrative Prediction of Therapeutic Response in T-cell Lymphoma by Omic and Spatial Modeling
通过组学和空间模型综合预测 T 细胞淋巴瘤的治疗反应
- 批准号:
10358520 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Integrative Prediction of Therapeutic Response in T-cell Lymphoma by Omic and Spatial Modeling
通过组学和空间模型综合预测 T 细胞淋巴瘤的治疗反应
- 批准号:
10115190 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Multi-parametric Perfusion MRI for Therapy Response Assessment in Brain Cancer
多参数灌注 MRI 用于脑癌治疗反应评估
- 批准号:
9927886 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别: