Advanced signal processing methods for neural data analysis to support development of brain dynamic biomarkers for research and clinical applications in patients with Alzheimer's and related dementias
用于神经数据分析的先进信号处理方法,支持开发大脑动态生物标志物,用于阿尔茨海默氏症和相关痴呆症患者的研究和临床应用
基本信息
- 批准号:10739673
- 负责人:
- 金额:$ 130.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease pathologyAlzheimer&aposs disease patientAlzheimer&aposs disease related dementiaAlzheimer’s disease biomarkerAmyloidAmyloid beta-ProteinArticulationBiological MarkersBrainClinicalClinical TrialsCognitiveCommunitiesDataData AnalysesDevelopmentDevice or Instrument DevelopmentDigital biomarkerDisease ProgressionEP300 geneEarly DiagnosisElderlyElectroencephalographyError SourcesEvent-Related PotentialsFrequenciesGoalsIndividualMagnetic Resonance ImagingMarkov ChainsMeasurementMeasuresMethodsModelingMorphologic artifactsNational Institute on AgingNerve DegenerationNeurobehavioral ManifestationsNoisePharmaceutical PreparationsPhasePopulationResearchRestSignal TransductionSleepSoftware ToolsSourceSpace ModelsStructureTechnologyTherapeuticThickTimeVariantbiomarker developmentclinical applicationcognitive performancedesigndigital technologyimprovedinnovationinsightinterestlearning algorithmneuralneuroimaging markerneurophysiologyneurotransmissionnon rapid eye movementnovelresponsesignal processingsource localizationspatial relationshiptask analysistau Proteinstool
项目摘要
Digital technologies can have enormous impact in the prediction, early detection, and tracking of Alzheimer’s
disease progression. In particular, there is a need to develop digital biomarkers that can detect early changes in
brain function before the onset of cognitive symptoms and/or brain biomarkers. The EEG is a compelling
candidate for an early “digital biomarker” of AD as numerous EEG features are known to be correlated with AD
progression and fundamental biomarkers. Unfortunately, there is limited evidence that these same EEG
measures, as currently constructed to describe population-level data, can accurately track, or predict AD
progression in individuals. One reason for this is that EEG signals have many sources of with- and between-
subject variation that are not accounted for in current analysis methods, leading to imprecise markers that only
have sufficient statistical power at the population-level. There have been recent advances in neural signal
processing that make it possible to account for these sources of error and in turn dramatically improve the
precision of EEG-derived measures. Over the past several years our lab has made significant strides to account
for these sources of error leading us to develop novel, sophisticated signal processing algorithms that can
enhance the precision of EEG derived measures. Through the specific aims of this project, we seek to provide
the AD research community with a suite of powerful, accessible signal processing software tools that will
dramatically enhance the precision and quality of EEG-derived biomarkers related to AD progression.
数字技术可能会对阿尔茨海默氏症的预测,早期检测和跟踪产生巨大影响
疾病进展。特别是,有必要开发数字生物标志物,可以检测到早期的变化
认知症状和/或脑生物标志物发作之前的大脑功能。脑电图是一个引人注目的
众所周知,众多脑电图功能与AD相关
进展和基本生物标志物。不幸的是,有限的证据表明这些脑电图
目前为描述人口级数据而构建的措施可以准确跟踪或预测广告
个体的进展。原因之一是,脑电图信号具有许多源
当前分析方法中未考虑的主题变化,导致暗示标记仅
在人群级别具有足够的统计能力。神经信号的最新进展
处理这些错误,从而使这些错误来源成为可能,从而显着改善
EEG衍生的措施的精度。在过去的几年中,我们的实验室取得了长足的进步
对于这些错误来源,导致我们开发了可以
提高EEG得出的措施的精度。通过该项目的具体目的,我们试图提供
广告研究社区,具有一套功能强大,可访问的信号处理软件工具,这些工具将
动态增强与AD进展相关的EEG衍生生物标志物的精度和质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patrick L. Purdon其他文献
Effect of Repeated Exposure to Sevoflurane on Electroencephalographic Alpha Oscillation in Pediatric Patients Undergoing Radiation Therapy: A Prospective Observational Study
反复暴露于七氟醚对接受放射治疗的儿科患者脑电图 Alpha 振荡的影响:一项前瞻性观察研究
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3.7
- 作者:
Samuel Madariaga;Christ Devia;Antonello Penna;J. Egaña;Vanessa Lucero;Soledad Ramírez;Felipe Maldonado;Macarena Ganga;Nicolás Valls;Nicolás Villablanca;Tomás Stamm;Patrick L. Purdon;Rodrigo G. Gutiérrez - 通讯作者:
Rodrigo G. Gutiérrez
Patrick L. Purdon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patrick L. Purdon', 18)}}的其他基金
Characterizing brain dynamic biomarkers of fentanyl using intracranial and high-density electroencephalogram in humans
使用人类颅内高密度脑电图表征芬太尼的大脑动态生物标志物
- 批准号:
10501397 - 财政年份:2022
- 资助金额:
$ 130.38万 - 项目类别:
Characterizing brain dynamic biomarkers of fentanyl using intracranial and high-density electroencephalogram in humans
使用人类颅内高密度脑电图表征芬太尼的大脑动态生物标志物
- 批准号:
10673843 - 财政年份:2022
- 资助金额:
$ 130.38万 - 项目类别:
Characterizing brain dynamic biomarkers of fentanyl using intracranial and high-density electroencephalogram in humans
使用人类颅内高密度脑电图表征芬太尼的大脑动态生物标志物
- 批准号:
10997253 - 财政年份:2022
- 资助金额:
$ 130.38万 - 项目类别:
A pilot study to characterize brain dynamic biomarkers of fentanyl for opioid overdose monitoring
一项表征芬太尼大脑动态生物标志物的初步研究,用于阿片类药物过量监测
- 批准号:
9894778 - 财政年份:2019
- 资助金额:
$ 130.38万 - 项目类别:
A Neural Systems Approach to Monitoring and Drug-Delivery for General Anesthesia
全身麻醉监测和药物输送的神经系统方法
- 批准号:
7848490 - 财政年份:2009
- 资助金额:
$ 130.38万 - 项目类别:
Multimodal Functional Imaging of Auditory Perception Under General Anesthesia
全身麻醉下听觉感知的多模态功能成像
- 批准号:
7640739 - 财政年份:2007
- 资助金额:
$ 130.38万 - 项目类别:
Multimodal Functional Imaging of Auditory Perception Under General Anesthesia
全身麻醉下听觉感知的多模态功能成像
- 批准号:
7320053 - 财政年份:2007
- 资助金额:
$ 130.38万 - 项目类别:
Multimodal Functional Imaging of Auditory Perception Under General Anesthesia
全身麻醉下听觉感知的多模态功能成像
- 批准号:
8074014 - 财政年份:2007
- 资助金额:
$ 130.38万 - 项目类别:
Multimodal Functional Imaging of Auditory Perception Under General Anesthesia
全身麻醉下听觉感知的多模态功能成像
- 批准号:
7425304 - 财政年份:2007
- 资助金额:
$ 130.38万 - 项目类别:
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 130.38万 - 项目类别:
A software tool to facilitate variable-level equivalency and harmonization in research data: Leveraging the NIH Common Data Elements Repository to link concepts and measures in an open format
促进研究数据中变量级别等效性和协调性的软件工具:利用 NIH 通用数据元素存储库以开放格式链接概念和测量
- 批准号:
10821517 - 财政年份:2023
- 资助金额:
$ 130.38万 - 项目类别:
Clinical Decision Support System for Early Detection of Cognitive Decline Using Electronic Health Records and Deep Learning
利用电子健康记录和深度学习早期检测认知衰退的临床决策支持系统
- 批准号:
10603902 - 财政年份:2023
- 资助金额:
$ 130.38万 - 项目类别:
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
- 批准号:
10735564 - 财政年份:2023
- 资助金额:
$ 130.38万 - 项目类别:
SCH: Dementia Early Detection for Under-represented Populations via Fair Multimodal Self-Supervised Learning
SCH:通过公平的多模式自我监督学习对代表性不足的人群进行痴呆症早期检测
- 批准号:
10816864 - 财政年份:2023
- 资助金额:
$ 130.38万 - 项目类别: